The Coulomb Dissociation of 8B and the 7Be(p, γ) 8B Reaction

  • Moshe Gai


Our current understanding of stellar evolution allows the use of stars as a labo-bratory for tests of fundamental physics. In particular the sun is well known to be the major contributer to the ambient neutrino flux on earth. Its large distance from the earth and the high density of the core allow for a window in the search for neutrino masses and oscilations with Δm 2 < 10−5 eV 2 1. This mass range is not accesible to either accelerator experiments or atmospheric neutrino studies and thus is of fundamental importance. In such a study one compares the predicted neutrino flux with the observed one and hence it relies on our understanding of the sun vis-a-vis the Standard Solar Model (SSM) 1 and most critically on our knowledge of the nuclear inputs to the SSM in the form of nuclear reaction rates. Indeed the question of evidence for neutrino oscilations and the possible deficit in observed neutrino flux is of current interest to the physics community as a whole vis-a-vis its consequences to the Standard Model of Particle Physics and it reaches far beyond the scope of Nuclear Astrophysics.


Neutrino Oscilations Neutrino Flux Nuclear Astrophysics Standard Solar Model Sudbury Neutrino Observatory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    John N. Bahcall, Neutrino Astrophysics, Cambridge University Press, New York, 1989.Google Scholar
  2. 2.
    B.W. Filippone, A.J. Elwyn, C.N. Davis, and D.D. Koetke, Phys. Rev. Lett. 50(1983)412, ibid Phys. Rev. C28(1983)2222.ADSCrossRefGoogle Scholar
  3. 3.
    F.J. Vaughn, R.A. Chalmers, D. Kohler, and L.F. Chase Jr; Phys. Rev. C2(1970)1657.ADSGoogle Scholar
  4. 4.
    R.W. Kavanagh, T.A. Tombrello, J.M. Mosher, and D.R. Goosman, Bull. Amer. Phys. Soc. 14(1969)1209.Google Scholar
  5. 5.
    P.D. Parker; Phys. Rev. 150(1966)851, ApJ 153(1968)L85.ADSCrossRefGoogle Scholar
  6. 6.
    E.G. Adelberger, S.A. Austin, J.N. Bahcall, A.B. Balantekin, G. Bertsch, G. Bogaert, L. Buch-mann, F.E. Cecil, A.E. Champagne, L. de Braeckeleer, C.A. Duba, S.R. Elliott, S.J. Freedman, M. Gai, G. Goldring, C.R. Gould, A. Gruzinov, W.C. Haxton, K.M. Heeger, E. Henley, M. Kamionkowski, R.W. Kavanagh, S.E. Koonin, K. Kubodera, K. Langanke, T. Motobayashi, V. Pandharipande, P. Parker, R.G.H. Robertson, C. Rolfs, R. Sawyer, N. Shaviv, T.D. Shoppa, K. Snover, E. Swanson, R.E. Tribble, S. Turck-Chiez, J.F. Wilkerson.; submitted to Rev. of Modern Phys., 1997, Preprint, UConn-40870-0017.Google Scholar
  7. 7.
    G. Baur, C.A. Bertulani, and H. Rebel; Nucl. Phys. A458(1986)188.ADSGoogle Scholar
  8. 8.
    H. Primakoff; Phys. Rev. 81(1951)899.ADSCrossRefGoogle Scholar
  9. 9.
    C.A. Bertulani; Phys. Rev. C49(1994)2688.ADSGoogle Scholar
  10. 10.
    S. Typel and G. Baur; Phys. Rev. C50(1994)2104.ADSGoogle Scholar
  11. 11.
    T. Motobayashi, N. Iwasa, M. Mourakawa, S. Shimoura, Y. Ando, H. Murakami, S. Shirato, J. Ruan (Gen), Y. Watanabe, N. Inabe, T. Kubo, M. Ishihara, M. Gai, R.H. France III, K.I. Hahn, Z. Zhao, T. Teranishi, T. Nakamura, Y. Futami, K. Furataka, and T. Delbar; Phys. rev. Lett. 73(1994)2680. andADSCrossRefGoogle Scholar
  12. N. Iwasa et al.; Jour. Phys. Soc. Jap. 65(1996)1256.ADSCrossRefGoogle Scholar
  13. 12.
    Moshe Gai, and Carlos A. Bertulani; Phys. Rev. C52(1995)1706.ADSGoogle Scholar
  14. 13.
    K. Langanke and T.D. Shoppa; Phys. Rev. C49(1994)R1771.ADSGoogle Scholar
  15. 14.
    T. Kikuchi, T. Motobayashi, N. Iwasa, Y. Ando, M. Kurokawa, S. Moriya, H. Murakami, T. Nishio, J. Ruan (Gen), S. Shirato, S. Shimoura, T. Uchibori, Y. Yanagisawa, M. Ishihara, T. Kubo, Y. Watanabe, M. Hirai, T. Nakamura, H. Sakurai, T. Teranishi, S. Kubono, M. Gai, R.H. France III, K.I. Hahn, Th. Delbar, C. Michotte, and P. Lipnik; Phys. Lett. B391(1996)261.ADSGoogle Scholar
  16. 15.
    Carlos A. Bertulani and Moshe Gai; submitted to Nucl. Phys. A, preprint UConn-40870-0019, 1997.Google Scholar
  17. 16.
    H. Esbensen and G.F. Bertsch; Phys. Lett. B359(1995)13 ibid 531 Nucl. Phys. A600(1996)37.ADSGoogle Scholar
  18. 17.
    N. Iwasa, F. Boue, G. Surowka, T. baumann, B. Blank, S. Czajkowski, A. Forster, M. Gai, H. Geissel, E. Grosse, M. Hellstrom, P. Koczon, B. Khlmeyer, R. Kulessa, F. Laue, C. Marchand, T. Motobayashi, H. Oeschler, A. Ozawa, M.S. Pravikoff, E. Schwab, P. Senger, J. Speer, A. Surowiec, C. Sturm, K. Summerer, T. Teranishi, F. Uhlig, A. Wagner, and W. Walus; GSI Scientific Report 1998.Google Scholar
  19. 18.
    F. Boue et al., GSI Scientific Report 1996, GSI-97-1.Google Scholar
  20. 19.
    F. Hammache, G. Bogaert, P. Aguer, C. Angulo, S. Barhoumi, L. Brillard, J.F. Chemin, G. Claverie, A. Coc, M. Hussonnios, M. Jacotin, J. Kiener, A. lefebvre, J.N. Scheurer, J.P. Thibaud, and E. Virassamynaiken; Phys. Rev. Lett. 80(1998)928.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Moshe Gai
    • 1
  1. 1.Dept. of Physics, U46University of ConnecticutStorrsUSA

Personalised recommendations