Dynamics of Density Fluctuations in a Non-Markovian Boltzmann-Langevin Model

  • Sakir Ayik


In the course of the past few years, the nuclear Boltzmann-Langevin (BL) model has emerged as a promising microscopic model for nuclear dynamics at intermediate energies1,2. The BL model goes beyond the much employed Boltzmann-Uehling-Uhlenbeck (BUU) model3, and hence it provides a basis for describing dynamics of density fluctuations and addressing processes exhibiting spontaneous symmetry breaking and catastrophic transformations in nuclear collisions, such as induced fission and mult ifragmentation4,5,6.


Memory Effect Nuclear Matter Unstable Mode Collective Mode Distortion Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Ayik and C. Gregoire, Fluctuation of single-particle density in nuclear collisions, Phys. Lett. B 212:269 (1998); Transport theory of fluctuation phenomena in nuclear collisions, Nuc. Phys. A 513: 187 (1990).Google Scholar
  2. 2.
    J. Randrup and B. Remaud, Fluctuations in one-body dynamics, Nuc. Phys. A 514: 339 (1990).Google Scholar
  3. 3.
    G. F. Bertsch and S. Das Gupta, A guide to microscopic models for intermediate energy heavy ion-collisions, Phys. Rep. 160: 190 (1988).Google Scholar
  4. 4.
    G. F. Burgio, Ph. Chomaz and J. Randrup, Dynamical clusterization in presence of instabilities Phys. Rev. Lett. 69: 885 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    F. -S. Zhang and E. Suraud, Boltzmann-Langevin equation, Dynamical instability and multifrag- mentation, Phys. Lett. B 319: 35 (1993).Google Scholar
  6. 6.
    Y. Abe, S. Ayik, P. -G. Reinhard and E. Suraud, On stochastic approaches of nuclear dynamics, preprint-YITP and submitted to Phys. Rep. (1996).Google Scholar
  7. 7.
    S. Ayik and M. Dworzecka, Role of memory effect on the spreading widths of collective states in the extended TDHF theory, Phys. Rev. Lett 54: 534 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    S. Ayik and D. Boilley, Damping of collective vibrations in a memory dependent transport model, Phys. Lett. B 276:263 (1992); B 284: 482E (1992).Google Scholar
  9. 9.
    S. Ayik, Long-range correlations in Boltzmann-Langevin model, Z. Phys. A 350: 45 (1994).Google Scholar
  10. 10.
    D. Kiderlen and H. Hofmann, Quantum effects in the stochastic behaviour of nuclear matter at finite excitations, Phys. Lett. B 332: 8 (1994).Google Scholar
  11. 11.
    S. Ayik, M. Belkacem and A. Bonasera, Non-Markovian approach to the damping of giant monopole resonances in nuclei, Phys. Rev. C 51: 611 (1995).Google Scholar
  12. 12.
    M. Belkacem, S. Ayik and A. Bonasera, Collisional damping of giant resonances in a nonMarkovian approach, Phys. Rev. C 52: 2499 (1995).Google Scholar
  13. 13.
    M. Colonna, Ph. Chomaz and J. Randrup, Linear response in stochastic mean-field theories and the onset of instabilities, Nuc.Phys. A 567: 637 (1994).Google Scholar
  14. 14.
    M. Colonna and Ph. Chomaz, Unstable infinite nuclear matter in stochastic mean-field approach Phys. Rev. C 49:1908 (1994). Google Scholar
  15. 15.
    S. Ayik and J. Randrup, Effect of memory time on the agitation of unstable modes in nuclear matter, Phys. Rev. C 50: 2947 (1994).Google Scholar
  16. 16.
    G. Baym and C. Pethick, “The Physics of Liquid and Solid Helium,” K. H. Bennemann and J. B. Ketterson, eds., Willey, New York, (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Sakir Ayik
    • 1
  1. 1.Physics DepartmentTennessee Technological UniversityCookevilleUSA

Personalised recommendations