Non-Instantaneous Breakup of Excited Nuclear Systems

  • R. T. de Souza
  • E. Cornell

Abstract

Recent experimental evidence indicates that bombardment of a target nucleus with intermediate energy heavy-ions [1, 2, 3] or high energy light-ions [4] can result in decay of the excited nuclear system into multiple intermediate mass fragments (IMFs:3 ≤ Z ≤ 20). Such a multifragment final state might arise due to either dynamical surface instabilities of the composite system, or alternatively from volume instabilities [5, 6]. While decay driven by surface instabilities (Rayleigh instabilities) might provide insight into the dynamics of the collision process, volume instabilities could yield information regarding the phase diagram of nuclear matter. Trajectories in the temperature density plane could depend sensitively on the dissipation and deposition of excitation energy. Recent experimental results have linked multifragment decays to a phase transition in finite nuclear systems [7]. This approach, however, avoids the issue of the importance of the collision dynamics. Do all the fragments arise instantaneously from an unstable homogeneous source [8, 9] or are the fragments emitted as the system de-excites and the source characteristics (excitation, charge, radius) change [10, 11]? The present work attempts to distinguish between these two scenarios.

Keywords

Central Collision Emission Time Fragment Pair Volume Instability Intermediate Mass Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. Ogilvie et al. Phys. Rev. Lett. 67, 1214 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    R. T. de Souza et al., Phys. Lett. B268, 6 (1991).Google Scholar
  3. 3.
    D. R. Bowman et al., Phys. Rev. Lett. 67, 1527 (1991).ADSCrossRefGoogle Scholar
  4. 4.
    K. Kwiatkowski et al., Phys. Rev. Lett. 74, 3756 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    G. Bertsch and P. J. Siemens, Phys. Lett. B126, 9 (1983).Google Scholar
  6. 6.
    W. Bauer et al., Phys. Rev. Lett. 58, 863 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    M. L. Gilkes et al., Phys. Rev. Lett. 73, 1590 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    J. Bondorf et al., Nucl. Phys. A444, 460 (1985).CrossRefGoogle Scholar
  9. 9.
    D.H.E. Gross et al., Phys. Rev. Lett. 56, 1544 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    W.A. Friedman, Phys. Rev. C 42, 667 (1990).Google Scholar
  11. 11.
    L. G. Moretto et al. Phys. Rev. Lett. 74, 1530 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    E. Cornell et al. Phys. Rev. Lett. 75, 1475 (1995).ADSCrossRefGoogle Scholar
  13. 13.
    T. M. Hamilton et al., Phys. Rev. C (in press)Google Scholar
  14. 14.
    G.F. Peaslee et al., Phys. Rev. C49, R2271 (1994).ADSGoogle Scholar
  15. 15.
    B. Kaempfer et al., Phys. Rev. C48, R955 (1993).ADSGoogle Scholar
  16. 16.
    R.T. de Souza et al., Nucl. Instr. Meth. A295, 109 (1990).ADSCrossRefGoogle Scholar
  17. 17.
    C. Cavata, et al., Phys. Rev. C42, 1760 (1990).ADSGoogle Scholar
  18. 18.
    R. Trockel et al., Phys. rev. Lett. 59, 2844 (1987).ADSCrossRefGoogle Scholar
  19. 19.
    Y. D. Kim et al., Phys. rev. Lett. 67, 14 (1991).ADSCrossRefGoogle Scholar
  20. 20.
    Y. D. Kim et al., Phys. Rev. C45, 338 (1992).ADSGoogle Scholar
  21. 21.
    D. Fox et al., Phys. Rev. C47, R421 (1993).ADSGoogle Scholar
  22. 22.
    E. Bauge et al., Phys. Rev. Lett 70, 3705 (1993).Google Scholar
  23. 23.
    T. C. Sangster et al., Phys. Rev. C47, R2457 (1993).ADSGoogle Scholar
  24. 24.
    D. Fox et al., Phys. Rev. C50, 2424 (1994).ADSGoogle Scholar
  25. 25.
    T. Glasmacher et al., Phys. Rev. C50, 952 (1994).ADSGoogle Scholar
  26. 26.
    M.A. Lisa et al., Phys. Rev. C44, 2865 (1991)ADSGoogle Scholar
  27. 27.
    R. Bougault et al., Phys. Lett. B232, 291 (1989).Google Scholar
  28. 28.
    W. G. Gong et al., Phys. Rev. C43, 1804 (1991).ADSGoogle Scholar
  29. 29.
    X.Z.Zhang et al., Nucl. Phys. A461, 641 (1987); A461, 668 (1987).Google Scholar
  30. 30.
    O. Schapiro et al., Nucl. Phys. A568, 333 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • R. T. de Souza
    • 1
  • E. Cornell
    • 1
  1. 1.Department of Chemistry and Indiana University Cyclotron FacilityIndiana UniversityBloomingtonUSA

Personalised recommendations