αs(MZ) and Strangeness Production

  • Johann Rafelski
  • Jean Letessier
  • Ahmed Tounsi


Using QCD methods we reevaluate strangeness production in a thermal QGP fireball. Specifically, running QCD renormalization group parameters α s (μ) and m s (μ) are employed1. We resum even-α s Feynman-diagrams involving two particles in initial and final states. In a simple dynamical description of the fireball we use these results to study two generic strangeness observables as function of the impact parameter (baryon content) and collision energy:
  • Specific (with respect to baryon number B) strangeness yield /B

    Once produced strangeness escapes, bound in diverse hadrons, from the evolving fireball and hence the total abundance observed is characteristic for the initial extreme conditions;

  • Phase space occupancy γs

    Strangeness freeze-out conditions at particle hadronization time tf, given the initially produced abundance, determine the final state observable phase space occupancy of strangeness γs(t f ).


Strange Quark Perturbative Expansion Strange Particle Strangeness Production Strange Quark Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Letessier, J. Rafelski, and A. Tounsi, Impact of QCD and QGP properties on strangeness production, submitted to Phys. Lett. B, (1996) Preprint AZPH-TH/96–08, PAR/LPTHE/96–10.Google Scholar
  2. 2.
    S. Abatzis, et al. (WA85 collaboration), Phys. Lett. B316:615 (1993); Phys. Lett. B347:158 (1995); D. DiBari, et al. (WA85 collaboration), Nucl. Phys. A590: 307 (1995).Google Scholar
  3. 3.
    Th. Alber et al. (NA35 collaboration), Z. Physik C64: 195 (1994).ADSGoogle Scholar
  4. 4.
    J. Rafelski, and B. Müller, Phys. Rev. Lett. 48:1066 (1982); Phys. Rev. Lett. 56: 2334E (1986).ADSGoogle Scholar
  5. 5.
    T. Biró, and J. Zimânyi, Phys. Lett. B113:6 (1982); Nucl. Phys. A395: 525 (1983).Google Scholar
  6. 6.
    P. Langacker, Precision experiments, grand unification, and compositeness, preprint NSF-ITP140, UPR-0683T, (1995).Google Scholar
  7. 7.
    M.B. Voloshin, Precision determination of as and mb from QCD sum rules for bb, preprint TPI-MINN-95/1-T and UMN-TH-11326–95, (1995).Google Scholar
  8. 8.
    J. Ellis, E. Gardi, M. Karliner, and M.A. Samuel, Padé approximants, Borel transforms and renormalons: the Bjorken sum rule as a case study, preprint, CERN-TH/95–1155 (1995).Google Scholar
  9. 9.
    J. Letessier, J. Rafelski, and A. Tounsi, A., Phys. Lett. B333:484 (1994); Quark-gluon plasma formation and strange antibaryons, submitted to Phys. Lett. B, Preprint AZPH-TH/95–14R and PAR/LPTHE/95–36R, (1996); Energy Dependence of Strange Particle Yields From a QGPFireball submitted to Phys. Rev. C, Preprint AZPH-TH/95–13, PAR/LPTHE/95 (1996).Google Scholar
  10. 10.
    J. Rafelski, J. Letessier, and A. Tounsi, Flavor flow signatures of quark-gluon plasma, in “Relativistic Aspects of Nuclear Physics”, T. Kodama, et al., eds., World Scientific, Singapore (1996).Google Scholar
  11. 11.
    I. Hinchliffe, Quantum chromodynamics, 1994, in: L. Montanet, et al., Phys. Rev. D50:1173 (1994), update (August 1995); Muta, T., 1987, “Foundations of Quantum Chromodynamics”, World Scientific, Singapore (1987).Google Scholar
  12. 12.
    M.A. Samuel, J. Ellis, and M. Karliner, Phys. Rev. Lett. 74: 4380 (1995).Google Scholar
  13. 13.
    ZEUS Collaboration, Phys. Lett. B363: 201 (1995).Google Scholar
  14. 14.
    L3 Collaboration, Study of the structure of hadronic events and determination of as at f = 130 and 136 GeV, submitted to Phys. Lett. B, CERN preprint PPE/95–192 (1995).Google Scholar
  15. 15.
    B. Kämpfer, in this volume (1996).Google Scholar
  16. 16.
    H.-C. Eggers, and J. Rafelski, Int. J. Mod. Phys. A6: 1067 (1991).ADSCrossRefGoogle Scholar
  17. 17.
    T.S. Biró, P. Lévai, and B. Müller, Phys. Rev. D42: 3078 (1990).ADSGoogle Scholar
  18. 18.
    T. Altherr, and D. Seibert, Phys. Lett. B313:149 (1993); Phys. Rev. C49: 1684 (1994).MathSciNetADSGoogle Scholar
  19. 19.
    N. Bilié, J. Cleymans, I. Dadie, and D. Hislop, Phys. Rev. C52: 401 (1995).ADSGoogle Scholar
  20. 20.
    J. Sollfrank, and U. Heinz, The role of strangeness in ultrarelativistic nuclear collisions, in “Quark Gluon Plasma 2”, p. 555, R.C. Hwa, ed., World Scientific, Singapore, (1995).Google Scholar
  21. 21.
    B. Combridge, Nucl. Phys. B151:429 (1979); T. Matsui, B. Svetitsky, and L.D. McLerran, Phys. Rev. D34: 783 (1986).Google Scholar
  22. 22.
    P. Koch, B. Müller, and J. Rafelski, Phys. Rep. 142: 167 (1986).ADSCrossRefGoogle Scholar
  23. 23.
    J. Letessier, J. Rafelski, A. Tounsi. Phys. Rev. C 50, 406 (1994).Google Scholar
  24. 24.
    T. Alber, et al., NA 35 Collaboration, Z. Physik C66: 77 (1995).MathSciNetADSGoogle Scholar
  25. 25.
    J. Rafelski, Phys. Lett. B262:333 (1991); Nucl. Phys. A544: 279 (1992);CrossRefGoogle Scholar
  26. J. Letessier, A. Tounsi, U. Heinz, J. Sollfrank, and J. Rafelski, Phys. Rev. D51: 3408 (1995).ADSGoogle Scholar
  27. 26.
    C. DeTar, Quark gluon plasma in numerical simulations of lattice QCD, in “Quark Gluon Plasma 2”, p.1, R.C. Hwa, ed., World Scientific, Singapore (1995); T. Blum, L. Kärkkäinen, D. Toussaint, and S. Gottlieb, Phys. Rev. D51:5153 (1995).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Johann Rafelski
    • 1
  • Jean Letessier
    • 2
  • Ahmed Tounsi
    • 2
  1. 1.Department of PhysicsUniversity of ArizonaTucsonUSA
  2. 2.Laboratoire de Physique Théorique et Hautes EnergiesUniversité Paris 7Cedex 05France

Personalised recommendations