Skip to main content

Evolution of Fragment Production as a Function of Excitation in 35C1 and 70Ge Projectile Breakup

  • Chapter
  • 127 Accesses

Abstract

Intermediate-mass fragment (IMF) production, typically 3≤;Z≤20, is a widely observed decay mode in heavy-ion reactions[1]. Possible scenarios to explain such a decay mode include bulk instabilities based on the expansion of hot nuclear matter with an initial compression stage in near-central collisions [2]–[4]. However, for such collisions, dynamical IMF production is also present as is evident from the observation of neck emission[5]–[7]. Also, the persistence of binary dissipative collisions[8]–[11] leaves a very small cross section for forming a hot and dense single source[12, 13]

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.G. Moretto and G.J. Wozniak, Ann. Rev. Nucl. Sci 43, 379 (1993) and refs. therein.

    Google Scholar 

  2. W. A. Friedman, Phys. Rev. Lett. 60, 2125, (1988).

    Article  Google Scholar 

  3. W. A. Friedman, Phys. Rev. C 42, 667, (1990).

    Google Scholar 

  4. G. Peilert et al., Rep. Prog. Phys. 57, 553 (1994) and refs. therein.

    Google Scholar 

  5. C.P. Montoya et al., Phys. Rev. Lett. 73, 3070, (1994).

    Article  ADS  Google Scholar 

  6. J. Tóke et al., Phys. Rev. Lett. 75, 2920, (1995).

    Article  ADS  Google Scholar 

  7. J.F. Lecolley et al., Phys. Lett. B354, 202, (1995).

    Google Scholar 

  8. B. Lott et al., Phys. Rev. Lett. 68, 3141, (1992).

    Article  ADS  Google Scholar 

  9. B.M. Quednau et al., Phys. Lett. B309, 10, (1993).

    Google Scholar 

  10. J.F. Lecolley et al., Phys. Lett. B325, 317, (1994).

    Google Scholar 

  11. Y. Larochelle et al., Phys. Lett. B352, 8, (1995).

    Google Scholar 

  12. J. Péter et al., Nucl. Phys. A593, 95, (1995).

    Article  Google Scholar 

  13. L. Beaulieu et al., Submitted to Phys. Rev. Lett., (1996).

    Google Scholar 

  14. S.B. Gazes et al., Phys. Rev. C 38, 712 (1988).

    Article  ADS  Google Scholar 

  15. C. Pruneau et al., Nucl. Phys. A500, 168, (1989).

    Article  Google Scholar 

  16. J. Pouliot et al., Phys. Lett. B223, 16, (1989).

    Google Scholar 

  17. K.A. Griffionen et al., Phys. Rev. C 40, 1647, (1989).

    Article  ADS  Google Scholar 

  18. R. Wada et al., Phys. Rev. C 39, 497, (1989).

    Article  ADS  Google Scholar 

  19. J. Pouliot et al., Phys. Rev. C 43, 735, (1991).

    Article  ADS  Google Scholar 

  20. D. Doré et al., Nucl. Phys. A545, 363, (1992).

    Article  Google Scholar 

  21. C. Schwarz et al., Z. Phys. A 345, 29, (1993).

    Article  ADS  Google Scholar 

  22. A. Lleres et al., Phys. Rev. C 48, 2753, (1993).

    Article  ADS  Google Scholar 

  23. P. Désesquelles et al., Phys. Rev. C 48, 1828, (1993).

    Article  ADS  Google Scholar 

  24. A. Badalà et al., Phys. Rev. C 48, 633, (1993).

    Article  ADS  Google Scholar 

  25. R. Laforest et al., Nucl. Phys. A568, 350, (1994).

    Article  Google Scholar 

  26. L. Beaulieu et al., Nucl. Phys. A580, 81, (1994).

    Article  Google Scholar 

  27. R.J. Charity et al., Phys. Lett. B323, 113, (1994).

    Google Scholar 

  28. R.J. Charity et al., Phys. Rev. 52, 3126, (1995).

    Article  ADS  Google Scholar 

  29. M. Samri et al., Nucl. Phys. A583, 427, (1995).

    Article  Google Scholar 

  30. L. Beaulieu et al., Phys. Rev. C51, 3492, (1995).

    ADS  Google Scholar 

  31. M. Samri et al., Accepted for publication in Phys. Lett. B, (1996).

    Google Scholar 

  32. W. Trautmann et al., Proceedings of the XXXIII International Winter Meeting on Nuclear Physics, Bormio (Italy), 1995 23-27 January. Ed. I. Iori, Physics Dept, Univ. Milano, p.372, (1995).

    Google Scholar 

  33. J. Hubele et al., Phys. Rev. C46, 1577, (1992).

    ADS  Google Scholar 

  34. A. Lleres et al., Phys. Rev. C 50, 1973, (1994).

    Article  ADS  Google Scholar 

  35. P. Kreutz et al., Nucl. Phys. A556, 672, (1993).

    Article  Google Scholar 

  36. C. Pruneau et al., Nucl. Inst. and Meth. A297, 404, (1990).

    Article  ADS  Google Scholar 

  37. Y. Larochelle et al., Nucl. Instr. and Meth. in Phys. Res. A348, 167, (1994).

    Google Scholar 

  38. J.P. Wielezcko et al., Proceedings of the 2nd TAPS Workshop, Guardamar, Espagne ed. by Diaz, Martinez and Schutz, World Scientific, p.145, (1993).

    Google Scholar 

  39. R.J. Charity et al., Nucl. Phys. A483, 371, (1988).

    Article  Google Scholar 

  40. D. Horn et al., Proceedings of the Workshop on Heavy-Ion Fusion, Padua, Italie, 1994 ed. A.M. Stefanini, G. Nebbia, S. Lunardi, G.Montagnoli and A. Vitturi, World Scientific, p.555, (1994).

    Google Scholar 

  41. D. Durand, Nucl. Phys. A 541, 266, (1992).

    Google Scholar 

  42. J. Pan et al., Phys. Lett. B344, 29, (1995).

    Google Scholar 

  43. J. Pan et al., Phys. Rev. C51, 1384, (1995).

    ADS  Google Scholar 

  44. T. Li et al., Phys. Rev. Lett. 70, 1924, (1993).

    Article  ADS  Google Scholar 

  45. S.C. Jeong et al., LPCC 95-12, submitted to Nucl Phys. A, (1996).

    Google Scholar 

  46. J.C. Steckmeyer et al., Proceedings of the XXXIII International Winter Meeting on Nuclear Physics, Bormio (Italie), 1995 23-27 Janvier. Ed. I. Iori, Dept Physics, Univ. Milano, p.183, (1995).

    Google Scholar 

  47. L. Beaulieu et al., To be submitted, (1996).

    Google Scholar 

  48. P. Désesquelles et al., Proceedings of the XXXIII International Winter Meeting on Nuclear Physics, Bormio (Italie), 1995 23-27 Janvier. Ed. I. Iori, Dept Physics, Univ. Milano, p.173, (1995).

    Google Scholar 

  49. J.A. Hauger et al., submitted to Phys. Rev. Lett. and Ph. D. Thesis, Purdue Univ., W. Lafayette, IN, unpublished, (1996).

    Google Scholar 

  50. M.L. Tincknell et al., Proceeding of the 12th Workshop on Nuclear Dynamics, Snowbird, Utah (USA), 1996 3-10 February. Ed. W. Bauer and G. Westfall, Plenum Press. To be published., (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beaulieu, L. et al. (1996). Evolution of Fragment Production as a Function of Excitation in 35C1 and 70Ge Projectile Breakup. In: Bauer, W., Westfall, G.D. (eds) Advances in Nuclear Dynamics 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9086-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9086-3_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9088-7

  • Online ISBN: 978-1-4757-9086-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics