Skip to main content

The BNL-AGS Experiment 896

  • Chapter
Advances in Nuclear Dynamics 2

Abstract

The Ho is the simplest and most plausible of the exotic multi-quark states originally derived from the MIT bag model.[l] It is a six-quark state with the quark composition of uuddss, baryon number B=2, spin-parity J π=O+, and strangeness S=−2. It is not a bound pair of distinct Λ particles (uds+uds), and it differs from both the deuteron (uud+udd) and the conjectured multi-hyperons in that all six quarks are contained in a single bag. This particle has not yet been observed unambiguously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.L. Jaffe, Phys. Rev. Lett. 38, 195 (1977).

    Article  Google Scholar 

  2. C. Gignoux et al., Phys. Lett. B193, 323 (1987).

    Google Scholar 

  3. B.S. Kumar, Nucl. Phys. A590, 29c (1995); H. J. Crawford and C.H. Greiner, Scientific American, 72 (January, 1994).

    Google Scholar 

  4. M. Oka et al., Prog. Theor. Phys. 66 556 (1981); A. Faessler et al., Nucl. Phys. A402, 555 (1983).

    Google Scholar 

  5. U. Straub et al., Nucl. Phys. A483, 686 (1988).

    Article  Google Scholar 

  6. A. Chodos et al., Phys. Rev. D 9, 3471 (1974); 10, 2599 (1974).

    ADS  Google Scholar 

  7. T.H.R. Skyrme, Proc. R. Soc. London, Ser. A 260, 127 (1961); Nucl. Phys. 31, 556 (1962); J. Math. Phys. (N.Y.) 12, 1735 (1971); E. Witten, Nucl. Phys. B 223, 422 (1983); 223, 433 (1983).

    Google Scholar 

  8. Y. Iwasaki et al., Phys. Rev. Lett. 60, 1371 (1988).

    Article  ADS  Google Scholar 

  9. C.B. Ware, Ph.D Thesis, University of Texas - Austin (December 1995); F. Merrill, Ph.D. Thesis, Carnegie Mellon University (June 1995); I. R. Sukaton, Ph.D Thesis, Carnegie Mellon University (April 1995); J.R. Klein, Ph.D Thesis, Princeton University, Princeton HEP/94/09 (June 1994 ); E. Albertson, Ph.D Thesis, Ruprecht-Karls-Univerität Heidelberg (October 1993 ).

    Google Scholar 

  10. B.A. Shabazian et al., Z. Phys. C 39, 151 (1988).

    Article  ADS  Google Scholar 

  11. A.N. Alekseev et al., Yad. Fiz. 52, 1612 (1990).

    Google Scholar 

  12. B.A. Shabazian et al., Phys. Lett. B316, 593 (1993).

    Google Scholar 

  13. S. Aoki et al., Phys. Rev. Lett. 65, 1729 (1990); Prog. Th. Phys. 85, 951 (1991); ibid., 85, 1287 (1991).

    Google Scholar 

  14. C.B. Dover et al., Phys. Rev. C 44, 1905 (1991).

    Article  ADS  Google Scholar 

  15. R. Longacre et al. (BNL-AGS E810), Nucl. Phys. A590, 477c (1995).

    Google Scholar 

  16. J. Belz et al. (BNL-AGS E888), Princeton University preprints 95–11 and 95–12 (October, 1995 ).

    Google Scholar 

  17. A. Shor and R. Longacre, Phys. Lett. B218, 100 (1989).

    Google Scholar 

  18. H. Sorge et al., Phys. Lett. B243, 100 (1989); ibid. B271, 37 (1991); Z. Phys. C59, 85 (1993).

    Google Scholar 

  19. S. Kahana et al., Phys. Rev. C 47, 1356 (1993).

    Article  ADS  Google Scholar 

  20. A. Baltz et al., Phys. Lett. B325, 7 (1990).

    Google Scholar 

  21. C.B. Dover et al., Phys. Rev. C 40, 115 (1989).

    Article  ADS  Google Scholar 

  22. P. Braun-Munzinger et al., SUNY - Stony Brook preprint NUCL-TH-9412035 (1994).

    Google Scholar 

  23. A.M. Badalyan et al., Soy. J. Nucl. Phys. 36, 860 (1982).

    Google Scholar 

  24. F.S. Rotondo, Phys. Rev. D 47, 3871 (1993).

    Google Scholar 

  25. B.A. Cole et al., Phys. Lett. B350, 147 (1995).

    Google Scholar 

  26. H.J. Crawford, T.J. Hallman et al., Proposal 896 for the BNL-AGS, “Search for a short-lived Ho dibaryon, short-lived strange matter, and to investigate hyperon production in 11.6 GeV/c/N Au+Au collisions.”

    Google Scholar 

  27. J.F. Donaghue et al., Phys. Rev. D 34, 3434 (1986).

    Article  ADS  Google Scholar 

  28. J. Stachel and G.R. Young, Ann. Rev. Nucl. Part. Sci. 42, 537 (1992).

    Article  ADS  Google Scholar 

  29. S. Albergo et al., Nucl. Inst. and Methods A311, 280 (1992); ibid., A362, 423 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Llope, W.J. (1996). The BNL-AGS Experiment 896. In: Bauer, W., Westfall, G.D. (eds) Advances in Nuclear Dynamics 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9086-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9086-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9088-7

  • Online ISBN: 978-1-4757-9086-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics