The Interactions of High-Energy, Highly Charged Ions with Fullerenes

  • R. Ali
  • H. G. Berry
  • S. Cheng
  • R. W. Dunford
  • H. Esbensen
  • D. S. Gemmell
  • E. P. Kanter
  • T. LeBrun
  • L. Young
  • W. Bauer

Abstract

In 1985, Robert Curl and Richard Smalleyl discovered a new form of carbon, the fullerene, C60, which consists of 60 carbon atoms in a closed cage resembling a soccer ball. In 1990, Krätschmer et al. were able to make macroscopic quantities of fullerenes2. This has generated intense activity to study the properties of fullerenes. One area of research involves collisions between fullerenes and atoms, ions or electrons3,4. In this paper we describe experiments involving interactions between fullerenes and highly charged ions in which the center-of-mass energies exceed those used in other work by several orders of magnitude. The high values of projectile velocity and charge state result in excitation and decay processes differing significantly from those seen in studies at. lower energies3. Our results are discussed in terms of theoretical models analogous to those used in nuclear physics and this provides an interesting demonstration of the unity of physics.

Keywords

Impact Parameter Giant Dipole Resonance High Charge State Plasmon Excitation Soccer Ball 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley, “C60: Buckminsterfullerene,” Nature. 318: 162 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    W. Kriitschmer, L.D. Lamb, K. Fostiropoulos, and D.R. Huffman, “Solid C60: a new form of carbon,” Nature. 347: 354 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    B. Welch, et al., “Electron capture from C60 by slow multiply charged ions,” Phys. Rev. Lett. 72: 1439 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    E.E.B. Campbell, et al., Collision experiments with C6o+, in: “Nuclear physics concepts in atomic cluster physics,” R.S. Schmidt, et al., ed., Springer Verlag, Berlin (1992) p. 185.CrossRefGoogle Scholar
  5. 5.
    G. von Helden, et al., “Carbon cluster cations with up to 84 atoms: structures, formation mechanism, and reactivity,” J. Phys. Chem. 97: 8182 (1993).CrossRefGoogle Scholar
  6. 6.
    V.E. Diirnenburg and H. Hintenberger, “Das Auftreten vielatomiger Kohlenstoffmolekiile im Hochfrequenzfunken zwischen Graphitelektroden,” Z. Naturforsch. 14A: 765 (1959).ADSGoogle Scholar
  7. 7.
    N. Bohr, “The penetration of atomic particles through matter,” K. Dan. Vidensk. Selsk. Mat.Fys. Medd. 18 (1948).Google Scholar
  8. 8.
    G.F. Bertsch, et al., “Collective plasmon excitations in C60 clusters,” Phys. Rev. Lett. 67: 2690 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    I.V. Hertel, et al., “Giant plasmon excitation in free C60 and C70 molecules studied by photoionization,” Phys. Rev. Lett. 68: 784 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    J.W. Keller and M.A. Coplan, “Electron energy loss spectroscopy of C60i” Chem. Phys. Lett. 193: 89 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    R.G. Allas, S.S. Hanna, L. Meyer-Schiitsmeister, and R.E. Segel, “Radiative capture of protons by B” and the giant dipole resonance in C12,“ Nucl. Phys. 58: 122 (1964).CrossRefGoogle Scholar
  12. 12.
    T. LeBrun, H.G. Berry, S. Cheng, R.W. Dunford, H. Esbensen, D.S. Gemmell, E.P. Kanter, and W. Bauer, “Ionization and Multifragmentation of C60 by High-Energy, Highly Charged Xe Ions,” Phys. Rev. Lett. 72: 3965 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    T. Drewello, W. Kriitschmer, M. Fieber-Erdman, and A. Ding, “Photoionization dynamics of C60 studied with synchrotron radiation,” Int. J. Mass Spectrosc. and Ion Proc. 124:R. 1 (1993).Google Scholar
  14. 14.
    A.S. Schlachter, et al., “Electron Capture for fast highly charged ions in gas targets: an empirical scaling rule,” Phys. Rev. A. 27: 3372 (1983).ADSCrossRefGoogle Scholar
  15. 15.
    W. Bauer, “Extraction of signals of a phase transition from nuclear multifragmentation,” Phys. Rev. C. 38: 1297 (1988).ADSCrossRefGoogle Scholar
  16. 16.
    W. Bauer, et al., “The nuclear lattice model of proton-induced multi-fragmentation reactions,” Nucl. Phys. A452: 699 (1986).CrossRefGoogle Scholar
  17. 17.
    W. Bauer, et al., “New approach to fragmentation reactions: the nuclear lattice model,” Phys. Lett. 150B: 53 (1985).Google Scholar
  18. 18.
    A. Hirsch, et al., “Experimental results from high energy proton-nucleus interactions, critical phenomena, and the thermal liquid drop model of fragment production,” Phys. Rev. C. 29: 508 (1984).ADSCrossRefGoogle Scholar
  19. 19.
    L. Phair, W. Bauer, and C.K. Gelbke, “Percolation with bubbles and toroids,” Phys. Lett. B314: 271 (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • R. Ali
    • 1
  • H. G. Berry
    • 1
  • S. Cheng
    • 1
  • R. W. Dunford
    • 1
  • H. Esbensen
    • 1
  • D. S. Gemmell
    • 1
  • E. P. Kanter
    • 1
  • T. LeBrun
    • 1
  • L. Young
    • 1
  • W. Bauer
    • 2
  1. 1.Physics DivisionArgonne National LaboratoryArgonneUSA
  2. 2.NSCLMichigan State UniversityEast LansingUSA

Personalised recommendations