Skip to main content

Excitation Energy and Temperature in the Multifragmentation of 1 GeV/Nucleon Au+C

  • Chapter
Book cover Advances in Nuclear Dynamics 2

Abstract

Multifragmentation (MF) is the break-up of colliding nuclei into many species of lighter nuclei, particularly intermediate mass fragments (IMF’s) with 3 ≤ Z IMF ≤ 30 [1]. MF occurs in many different kinds of nuclear reactions when the excitation energy per nucleon is comparable to the nucleon binding energy. At lower excitation energy, a compound nucleus is formed, which decays by evaporation of a few light particles (primarily neutrons, protons, and alphas), leaving a large residual nucleus that contains most of the original mass. At higher energy, the excited system decomposes entirely into light particles. As excitation energy increases, the final mass yields start at low excitation with a double structure peaked at the lowest and highest masses, progress through a power law mass distribution of IMF’s at intermediate excitation, and end at high excitation with an exponential distribution of only light particles. This evolution strongly resembles the progression of a heated fluid from the liquid state through the critical point into the gaseous phase. Since pioneering studies in the early 1980’s [2], intense experimental and theoretical effort has focused on this behavior, attempting to understand the mechanism of MF. Although it is not universally accepted, the idea of a nuclear liquid-gas phase transition has become the leading paradigm used to interpret MF phenomena. Many important questions remain unresolved, including:

  • does MF exhibited by different nuclear reactions have a common underlying physical mechanism?

  • do the excited systems equilibrate sufficiently to apply thermal concepts?

  • is the phase transition first order or continuous, and does this vary for different reactions?

  • what are the thermodynamic properties (e.g. temperature, density, entropy) of these systems?

  • what are the trajectories in the temperature-density plane for various reactions?

  • can the physical properties of nuclear matter, including the equation of state, be extracted from MF data?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. H. E. Gross, Rep. Progr. Phys. 53, 605 (1990).

    Google Scholar 

  2. A. S. Hirsch et al.,Phys. Rev. C29, 508 (1984).

    Google Scholar 

  3. H. E. Stanley, “Introduction to Phase Transitions and Critical Phenomena,” Oxford University Press, Oxford, 1971.

    Google Scholar 

  4. A. S. Hirsch et al.,in:,“Proceedings of the 12th Winter Workshop on Nuclear Dynamics,” (this volume), W. Bauer and G. Westfall, eds., Plenum Press, New York, NY, 1996.

    Google Scholar 

  5. N. T. Porile et al.,Phys. Rev. C39, 1914 (1989).

    Google Scholar 

  6. A. M. Poskanzer et al.,Phys. Rev. C3, 882 (1971).

    Google Scholar 

  7. K. Kwiatkowski et al.,Phys. Rev. Lett. 74 3756 (1995).

    Google Scholar 

  8. M. L. Gilkes et al., Phys. Rev. Lett. 73 1590 (1994).

    Article  ADS  Google Scholar 

  9. J. B. Elliott et aL, submitted to Phys. Lett. B., 1996.

    Google Scholar 

  10. A. Hauger et al.,submitted to Phys. Rev. Lett., 1996.

    Google Scholar 

  11. G. Rai et al.,IEEE Trans. Nucl. Sci. 37 56 (1990).

    Google Scholar 

  12. W. Christie et al.,Nucl. Instr. Methods A255 46 (1987).

    Google Scholar 

  13. X. Campi, J. Phys. A19, L917 (1986); Phys. Lett., B208, 351 (1988).

    Google Scholar 

  14. R. W. Minich et al.,Phys. Lett. B118 458 (1982).

    Google Scholar 

  15. K. Summerer et al.,Phys. Rev. C42 1546 (1990).

    Google Scholar 

  16. Y. Yariv and Z. Fraenkel, Phys. Rev. C20, 2227 (1979).

    ADS  Google Scholar 

  17. D. Cussol et al., Nucl. Phys. A581, 298 (1993).

    Google Scholar 

  18. R. Wada et al.,Phys. Rev. C39 497 (1989).

    Google Scholar 

  19. K. Hagel et al.,Nucl. Phys. A486 429 (1988).

    Google Scholar 

  20. J. P. Bondorf et al., Phys. Rep. 257, 133 (1995).

    Article  Google Scholar 

  21. R. K. Pathria, “Statistical Mechanics,” Pergamon Press, Oxford, 1972.

    Google Scholar 

  22. S. Albergo et aL, Nuovo Cimento A89, 1 (1985).

    ADS  Google Scholar 

  23. J. Pochodzalla et al.,Phys. Rev. Lett. 75 1040 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tincknell, M.L. et al. (1996). Excitation Energy and Temperature in the Multifragmentation of 1 GeV/Nucleon Au+C. In: Bauer, W., Westfall, G.D. (eds) Advances in Nuclear Dynamics 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9086-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9086-3_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9088-7

  • Online ISBN: 978-1-4757-9086-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics