The Scaling Function of Nuclear Matter

  • Andrew S. Hirsch
  • S. Albergo
  • F. Bieser
  • F. P. Brady
  • Z. Caccia
  • D. A. Cebra
  • A. D. Chacon
  • J. L. Chance
  • Y. Choi
  • S. Costa
  • J. B. Elliott
  • M. L. Gilkes
  • J. A. Hauger
  • E. L. Hjort
  • A. Insolia
  • M. Justice
  • D. Keane
  • J. C. Kintner
  • V. Lindenstruth
  • M. A. Lisa
  • U. Lynen
  • H. S. Matis
  • M. McMahan
  • C. McParland
  • W. F. J. Müller
  • D. L. Olson
  • M. D. Partlan
  • N. T. Porile
  • R. Potenza
  • G. Rai
  • J. Rasmussen
  • H. G. Ritter
  • J. Romanski
  • J. L. Romero
  • G. V. Russo
  • H. Sann
  • R. Scharenberg
  • A. Scott
  • Y. Shao
  • B. K. Srivastava
  • T. J. M. Symons
  • M. L. Tincknell
  • C. Tuvé
  • S. Wang
  • P. Warren
  • H. H. Wieman
  • T. Wienold
  • K. Wolf

Abstract

In two recent publications [1, 2], the EOS Collaboration has presented the first model independent determination of four critical exponents for nuclear matter based on the analysis of exclusive nuclear multifragmentation data obtained in 1 GeV/nucleon collisions of gold on a carbon target at the Lawrence Berkeley Bevalac. These studies were motivated in part by the striking resemblance nuclear multifragmentation data has with many aspects of critical phenomena [3, 4, 5]. In reference [2], the critical exponent σ was determined assuming that the multifragmentation data would exhibit the type of scaling expected for systems possessing critical behavior. In this paper, we demonstrate that this is indeed the case, and we determine for the first time the scaling function of nuclear matter.

Keywords

Critical Exponent Nuclear Matter Critical Behavior Scaling Function Time Projection Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. L. Gilkes, et al., Phys. Rev. Lett., 73, 590 (1995).Google Scholar
  2. 2.
    J. B. Elliott, et al. Submitted to Phys. Lett.Google Scholar
  3. 3.
    J. E. Finn, et al., Phys. Rev. Lett. 49, 1321 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    R. W. Minich et al., Phys. Lett. B118, 458, (1982).Google Scholar
  5. 5.
    X. Campi, J. Phys. A: Math, Ten. 19, L917 (1986); X. Campi, Phys. Lett. B208, 351 (1988).Google Scholar
  6. 6.
    E. A. Guggenheim, J. Chem. Phys. 13, (1945) 253.ADSCrossRefGoogle Scholar
  7. 7.
    D. Stauffer, Phys. Rep. 54 (1979) 1.ADSCrossRefGoogle Scholar
  8. 8.
    H. Nakanishi and H. E. Stanley, Phys. Rev. B 22, 2466 (1980).Google Scholar
  9. 9.
    Elliott Ph.D. Thesis, Purdue University, 1995.Google Scholar
  10. 10.
    D. Stauffer, Phys. Rev. Lett. 35, 394 (1975).ADSCrossRefGoogle Scholar
  11. 11.
    K. Binder, et al., Phys. Rev. B10 (1974) 3853 and 12, 5261 (1975).Google Scholar
  12. 12.
    B. Widom, J. Chem. Phys. 43, 3898 (1965).ADSCrossRefGoogle Scholar
  13. 13.
    M. E. Fisher, Physics 3, 255 (1967).Google Scholar
  14. 14.
    C. S. Kiang and D. Stauffer, Z. Physik 235, 130 (1970).ADSCrossRefGoogle Scholar
  15. 15.
    G. Rai, et al., IEEE Trans. Nuct. Sci. 37, 56 (1990).ADSCrossRefGoogle Scholar
  16. 16.
    W. Christie, et al., Nucl. Instr. Methods A255 46 (1987).CrossRefGoogle Scholar
  17. 17.
    M. D’Agostino, et al., Phys. Rev. Lett., 75, 4373 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    J. A. Hauger, submitted to Phys. Rev. Lett.; J. A. Hauger, Ph.D. Thesis, Purdue University, 1995; M. L. Tincknell, contribution to these Proceedings.Google Scholar
  19. 19.
    P. G. Warren, Ph.D. Thesis, Purdue University, 1996.Google Scholar
  20. 20.
    S. Das Gupta, J. Pan, McGill University Preprint McGill/95–27, submitted to Phys. Rev. C (1995).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Andrew S. Hirsch
    • 1
  • S. Albergo
    • 2
  • F. Bieser
    • 3
  • F. P. Brady
    • 4
  • Z. Caccia
    • 2
  • D. A. Cebra
    • 4
  • A. D. Chacon
    • 5
  • J. L. Chance
    • 4
  • Y. Choi
    • 1
  • S. Costa
    • 2
  • J. B. Elliott
    • 1
  • M. L. Gilkes
    • 1
  • J. A. Hauger
    • 1
  • E. L. Hjort
    • 1
  • A. Insolia
    • 2
  • M. Justice
    • 6
  • D. Keane
    • 6
  • J. C. Kintner
    • 4
  • V. Lindenstruth
    • 7
  • M. A. Lisa
    • 3
  • U. Lynen
    • 7
  • H. S. Matis
    • 3
  • M. McMahan
    • 3
  • C. McParland
    • 3
  • W. F. J. Müller
    • 7
  • D. L. Olson
    • 3
  • M. D. Partlan
    • 4
  • N. T. Porile
    • 1
  • R. Potenza
    • 2
  • G. Rai
    • 3
  • J. Rasmussen
    • 3
  • H. G. Ritter
    • 3
  • J. Romanski
    • 2
  • J. L. Romero
    • 4
  • G. V. Russo
    • 2
  • H. Sann
    • 7
  • R. Scharenberg
    • 1
  • A. Scott
    • 6
  • Y. Shao
    • 6
  • B. K. Srivastava
    • 1
  • T. J. M. Symons
    • 3
  • M. L. Tincknell
    • 1
  • C. Tuvé
    • 2
  • S. Wang
    • 6
  • P. Warren
    • 1
  • H. H. Wieman
    • 3
  • T. Wienold
    • 3
  • K. Wolf
    • 5
  1. 1.Purdue UniversityWest LafayetteUSA
  2. 2.Istituto Nazionale di Fisica Nucleare-Sezione di CataniaUniversitá di CataniaCataniaItaly
  3. 3.Nuclear Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.University of CaliforniaDavisUSA
  5. 5.Texas A&M UniversityCollege StationUSA
  6. 6.Kent State UniversityKentUSA
  7. 7.GSIDarmstadtGermany

Personalised recommendations