Realistic Expanding Source Model for Relativistic Heavy-Ion Collisions

  • Scott Chapman
  • J. Rayford Nix


An international search is currently underway for the quark-gluon plasma—a predicted new phase of nuclear matter where quarks roam almost freely throughout the medium instead of being confined to individual nucleons.1,2 Such a plasma could be formed through the compression and excitation that occur when nuclei collide at relativistic speeds. With increasing compression the nucleons overlap sufficiently that they should lose their individual identity and transform into deconfined quarks, and with increasing excitation the many pions that are produced overlap sufficiently that they should lose their individual identity and transform into deconfined quarks and anti-quarks.


Transverse Velocity Wigner Distribution Function Nuclear Temperature Isospin Chemical Potential Dense Hadronic Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Satz, Ann. Rev. Nucl. Part. Sci. 35: 245 (1985).Google Scholar
  2. 2.
    Quark Matter ‘85, Proc. Eleventh Int. Conf. on Ultra-Relativistic Nucleus-Nucleus Collisions, Monterey, California, 1995,“ Nucl. Phys. A590: 1c (1995).Google Scholar
  3. 3.
    R. Hanbury Brown and R. Q. Twiss, Phil. Mag. 45: 663 (1954).Google Scholar
  4. 4.
    G. Goldhaber, W. B. Fowler, S. Goldhaber, T. F. Hoang, T. E. Kalogeropoulos, and W. M. Powell, Phys. Rev. Lett. 3: 181 (1959).ADSCrossRefGoogle Scholar
  5. 5.
    F. Cooper, G. Frye, and E. Schonberg, Phys. Rev. D 11: 192 (1975).ADSCrossRefGoogle Scholar
  6. 6.
    J. D. Bjorken, Phys. Rev. D 27: 140 (1983).Google Scholar
  7. 7.
    T. Abbott et al. (E-802 Collaboration), Phys. Rev. C 50: 1024 (1994).Google Scholar
  8. 8.
    National Nuclear Data Center, WWW URL NNDC Online Data Service, Data Base CSISRS, Accession Number CO501.Google Scholar
  9. 9.
    T. V. A. Cianciolo, private communication (1996).Google Scholar
  10. 10.
    J. R. Nix, Nucl. Phys. A130: 241 (1969).CrossRefGoogle Scholar
  11. 11.
    J. Bolz, U. Ornik, M. Plumer, B. R. Schlei, and R. M. Weiner, Phys. Lett. B300: 404 (1993).Google Scholar
  12. 12.
    L. Montanet et al. (Particle Data Group), Phys. Rev. D 50: 1173 (1994).CrossRefGoogle Scholar
  13. 13.
    F. Cooper and G. Frye, Phys. Rev. D 10: 186 (1974).ADSCrossRefGoogle Scholar
  14. 14.
    G. Bertsch, M. Gong, and M. Tohyama, Phys. Rev. C 37: 1896 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Scott Chapman
    • 1
  • J. Rayford Nix
    • 1
  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations