Advances in Nuclear Dynamics 2 pp 137-144 | Cite as
Reducibility, Thermal and Mass Scaling in Angular Correlations from Multifragmentation Reactions
Chapter
Abstract
Intermediate-mass-fragment (IMF, 3 ≤ Z ≤ 20) emission probabilities and IMF charge distributions were recently shown to be reducible to the corresponding one fragment quantities. Furthermore, a strong thermal scaling was shown to control the energy dependence of the same quantities [1, 2, 3, 4].
Keywords
Angular Correlation Reaction Plane Particle Pair Azimuthal Anisotropy Mass Scaling
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.L.G. Moretto et al., Phys. Rev. Lett. 71, 3935 (1993).ADSCrossRefGoogle Scholar
- 2.L.G. Moretto et al., Phys. Rev. Lett. 74, 1530 (1995).ADSCrossRefGoogle Scholar
- 3.K. Tso et al., Phys. Lett. B 361, 25 (1995).ADSCrossRefGoogle Scholar
- 4.L. Phair et al., Phys. Rev. Lett. 75, 213 (1995).ADSCrossRefGoogle Scholar
- 5.M.B. Tsang et al., Phys. Lett. B 148, 265 (1984).MathSciNetADSCrossRefGoogle Scholar
- 6.C.B. Chitwood et al., Phys. Rev. C 34, 858 (1986).ADSCrossRefGoogle Scholar
- 7.D.J. Fields et al., Phys. Rev. C 34, 536 (1986).ADSCrossRefGoogle Scholar
- 8.M.B. Tsang et al., Phys. Rev. C 42, R15 (1990).ADSCrossRefGoogle Scholar
- 9.D. Ardouin et al., Nucl. Phys. A514, 564 (1990).CrossRefGoogle Scholar
- 10.S. Wang et al., Phys. Rev. C 44, 1091 (1991).ADSCrossRefGoogle Scholar
- 11.L. Phair et al., Nucl. Phys. A564, 453 (1993).CrossRefGoogle Scholar
- 12.This software threshold is sufficiently low to integrate nearly all of the measured energy spectra. For larger thresholds (up to 5 MeV), the stated conclusions of this work remain unchanged but the azimuthal anisotropies become more pronounced.Google Scholar
- 13.The He yield is mostly a particles. The 3He contribution is less than 20%.Google Scholar
- 14.L.G. Moretto, Nucl. Phys. A242, 211 (1975).Google Scholar
- 15.M.B. Tsang et al., Phys. Rev. C 44, 2065 (1991).ADSCrossRefGoogle Scholar
- 16.J. Lauret et al., Phys. Lett. B 339, 22 (1994).ADSCrossRefGoogle Scholar
- 17.T. Ethvignot, et al., Phys. Rev. C 48, 618 (1993).ADSCrossRefGoogle Scholar
- 18.R.A. Lacey et al., Phys. Rev. Lett. 70, 1224 (1993).ADSCrossRefGoogle Scholar
- 19.M.B. Tsang et al., Phys. Rev. Lett. 52, 1967 (1984).ADSCrossRefGoogle Scholar
- 20.M.B. Tsang et al., Phys. Rev. Lett. 57, 559 (1986).MathSciNetADSCrossRefGoogle Scholar
- 21.M.B. Tsang et al., Phys. Rev. Lett. 60, 1479 (1988).ADSCrossRefGoogle Scholar
- 22.W.K. Wilson et al., Phys. Rev. C 41, R1881 (1990).ADSCrossRefGoogle Scholar
- 23.Note that the observed mass scaling is independent of the thermal scaling observed in Fig. 2. We merely use the linear slopes there to simplify our analysis of the mass scaling.Google Scholar
- 24.L.G. Moretto, Phys. Rev. C 29, 843 (1984).ADSCrossRefGoogle Scholar
- 25.P. Chomaz, M. Colonna, A. Guarnera, B. Jacquot, Nucl. Phys. A583, c305 (1995).ADSCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 1996