Skip to main content

Scaling Laws, Transient Times and Shell Effects in Helium Induced Nuclear Fission

  • Chapter
  • 132 Accesses

Abstract

Fission excitation functions have been studied over the last decades and they have shown a dramatical variation from nucleus to nucleus over the periodic table[1,2,3]. Some of these differences can be understood in terms of a changing liquid-drop fission barrier, others are due to strong shell effects which occur e.g. in the neighborhood of the double magic numbers Z=82 and N=126. Further effects may be associated with pairing and the angular momentum dependence of the fission barrier[4,5,6]. With the availability of newer accelerators, several studies have investigated heavy ion and high energy light particle induced fission [5]. These reactions show a large deposit of energy, mass and most important angular momentum. The strong dependence of the fission probability on the latter quantity makes comparisons to liquid drop model calculations difficult. The problem of extensive angular momentum, energy and mass transfer can be minimized by the use of light ion induced fission at moderate bombarding energies. In contrast to heavy ion reactions, it has been shown that the fission barriers extracted from low energy light ion induced fission reactions differ only slightly from liquid drop predictions[7,8].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. M. Raisbeck and J.W. Cobble, Phys. Rev. 153, 1270 (1967).

    Article  ADS  Google Scholar 

  2. L.G. Moretto, S.G. Thompson, J. Routti, and R.C. Gatti, Phys. Lett. 38B, 471 (1972).

    Article  Google Scholar 

  3. A. Khodai-Joopari, Ph.D. thesis, University of California at Berkeley, 1966.

    Google Scholar 

  4. R. Vandenbosch, J.R. Huizenga, Nuclear Fission ( Academic Press, New York, 1973 ).

    Google Scholar 

  5. C. Wagemans, The Nuclear Fission Process (CRC Press, Boca Raton - Ann Arbor - Boston - London, 1991) and references therein.

    Google Scholar 

  6. D.J. Hinde, J.R. Leigh, J.P. Lestone, J.O. Newton, S. Elfström, J.X. Wei, and M. Zielinska-Pfabé, Phys. Lett. B258, 35 (1991).

    Google Scholar 

  7. F.D. Becchetti et al., Phys. Rev. C 28, 1217 (1983).

    Article  ADS  Google Scholar 

  8. L.G. Moretto, K.X. Jing, R. Gatti, R.P. Schmitt, and G.J. Wozniak, Phys. Rev. Lett. 75, 4186 (1995).

    Article  ADS  Google Scholar 

  9. E. Wigner, Trans. Faraday Soc. 34, 29 (1938).

    Article  Google Scholar 

  10. N. Bohr and J.A. Wheeler, Phys. Rev. 56, 426 (1939).

    Article  ADS  Google Scholar 

  11. D. Hilscher and H. Rossner, Ann. Phys. Fr. 17, 471 (1992).

    Article  ADS  Google Scholar 

  12. P. Paul and M. Thoennessen, Ann. Rev. Nucl. Part. Sc. 44, 65 (1994).

    Article  ADS  Google Scholar 

  13. M. Thoennessen and G.F. Bertsch, Phys. Rev. Lett. 71, 4303 (1993).

    Article  ADS  Google Scholar 

  14. P. Grange and H.A. Weidenmüller, Phys. Lett. B96, 26 (1980).

    Google Scholar 

  15. P. Grange, J.-Q. Li, and H.A. Weidenmüller, Phys. Rev. C 27, 2063 (1983).

    Article  ADS  Google Scholar 

  16. H.A. Weidenmüller and J.-S. Zhang, Phys. Rev. C 29, 879 (1984).

    Article  ADS  Google Scholar 

  17. P. Grange et al., Phys. Rev. C 34, 209 (1986).

    Article  ADS  Google Scholar 

  18. Z.-D. Lu et al., Z. Phys. A 323, 477 (1986).

    Google Scholar 

  19. Z.-D. Lu et al., Phys. Rev. C 42, 707 (1990).

    Article  ADS  Google Scholar 

  20. D. Cha and G.F. Bertsch, Phys. Rev. C 46, 306 (1992).

    Article  ADS  Google Scholar 

  21. P. Frobrich, I.I. Gontchar, and N.D. Mavlitov, Nucl. Phys. A 556, 281 (1993).

    Article  ADS  Google Scholar 

  22. L.G. Moretto, K.X. Jing, and G.J. Wozniak, Phys. Rev. Lett. 74, 3557 (1995).

    Article  ADS  Google Scholar 

  23. Th. Rubehn, K.X. Jing, L.G. Moretto, L. Phair, K. Tso, and G.J. Wozniak, to be published.

    Google Scholar 

  24. P. Möller, J.R. Nix, W.D. Myers, and W.J. Swiatecki, (Los Alamos National Laboratory, LAUR-3083, 1994 ).

    Google Scholar 

  25. W.D. Myers and W.J. Swiatecki, (Lawrence Berkeley National Laboratory, LBL-36803, 1994 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rubehn, T., Jing, K., Moretto, L.G., Phair, L., Tso, K., Wozniak, G.J. (1996). Scaling Laws, Transient Times and Shell Effects in Helium Induced Nuclear Fission. In: Bauer, W., Westfall, G.D. (eds) Advances in Nuclear Dynamics 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9086-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9086-3_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9088-7

  • Online ISBN: 978-1-4757-9086-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics