Scaling Laws, Transient Times and Shell Effects in Helium Induced Nuclear Fission

  • Thorsten Rubehn
  • Kexing Jing
  • Luciano G. Moretto
  • Larry Phair
  • Kin Tso
  • Gordon J. Wozniak


Fission excitation functions have been studied over the last decades and they have shown a dramatical variation from nucleus to nucleus over the periodic table[1,2,3]. Some of these differences can be understood in terms of a changing liquid-drop fission barrier, others are due to strong shell effects which occur e.g. in the neighborhood of the double magic numbers Z=82 and N=126. Further effects may be associated with pairing and the angular momentum dependence of the fission barrier[4,5,6]. With the availability of newer accelerators, several studies have investigated heavy ion and high energy light particle induced fission [5]. These reactions show a large deposit of energy, mass and most important angular momentum. The strong dependence of the fission probability on the latter quantity makes comparisons to liquid drop model calculations difficult. The problem of extensive angular momentum, energy and mass transfer can be minimized by the use of light ion induced fission at moderate bombarding energies. In contrast to heavy ion reactions, it has been shown that the fission barriers extracted from low energy light ion induced fission reactions differ only slightly from liquid drop predictions[7,8].


Level Density Excitation Function Compound Nucleus Neutron Emission Transient Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. M. Raisbeck and J.W. Cobble, Phys. Rev. 153, 1270 (1967).ADSCrossRefGoogle Scholar
  2. 2.
    L.G. Moretto, S.G. Thompson, J. Routti, and R.C. Gatti, Phys. Lett. 38B, 471 (1972).CrossRefGoogle Scholar
  3. 3.
    A. Khodai-Joopari, Ph.D. thesis, University of California at Berkeley, 1966.Google Scholar
  4. 4.
    R. Vandenbosch, J.R. Huizenga, Nuclear Fission ( Academic Press, New York, 1973 ).Google Scholar
  5. 5.
    C. Wagemans, The Nuclear Fission Process (CRC Press, Boca Raton - Ann Arbor - Boston - London, 1991) and references therein.Google Scholar
  6. 6.
    D.J. Hinde, J.R. Leigh, J.P. Lestone, J.O. Newton, S. Elfström, J.X. Wei, and M. Zielinska-Pfabé, Phys. Lett. B258, 35 (1991).Google Scholar
  7. 7.
    F.D. Becchetti et al., Phys. Rev. C 28, 1217 (1983).ADSCrossRefGoogle Scholar
  8. 8.
    L.G. Moretto, K.X. Jing, R. Gatti, R.P. Schmitt, and G.J. Wozniak, Phys. Rev. Lett. 75, 4186 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    E. Wigner, Trans. Faraday Soc. 34, 29 (1938).CrossRefGoogle Scholar
  10. 10.
    N. Bohr and J.A. Wheeler, Phys. Rev. 56, 426 (1939).ADSCrossRefGoogle Scholar
  11. 11.
    D. Hilscher and H. Rossner, Ann. Phys. Fr. 17, 471 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    P. Paul and M. Thoennessen, Ann. Rev. Nucl. Part. Sc. 44, 65 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    M. Thoennessen and G.F. Bertsch, Phys. Rev. Lett. 71, 4303 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    P. Grange and H.A. Weidenmüller, Phys. Lett. B96, 26 (1980).Google Scholar
  15. 15.
    P. Grange, J.-Q. Li, and H.A. Weidenmüller, Phys. Rev. C 27, 2063 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    H.A. Weidenmüller and J.-S. Zhang, Phys. Rev. C 29, 879 (1984).ADSCrossRefGoogle Scholar
  17. 17.
    P. Grange et al., Phys. Rev. C 34, 209 (1986).ADSCrossRefGoogle Scholar
  18. 18.
    Z.-D. Lu et al., Z. Phys. A 323, 477 (1986).Google Scholar
  19. 19.
    Z.-D. Lu et al., Phys. Rev. C 42, 707 (1990).ADSCrossRefGoogle Scholar
  20. 20.
    D. Cha and G.F. Bertsch, Phys. Rev. C 46, 306 (1992).ADSCrossRefGoogle Scholar
  21. 21.
    P. Frobrich, I.I. Gontchar, and N.D. Mavlitov, Nucl. Phys. A 556, 281 (1993).ADSCrossRefGoogle Scholar
  22. 22.
    L.G. Moretto, K.X. Jing, and G.J. Wozniak, Phys. Rev. Lett. 74, 3557 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    Th. Rubehn, K.X. Jing, L.G. Moretto, L. Phair, K. Tso, and G.J. Wozniak, to be published.Google Scholar
  24. 24.
    P. Möller, J.R. Nix, W.D. Myers, and W.J. Swiatecki, (Los Alamos National Laboratory, LAUR-3083, 1994 ).Google Scholar
  25. 25.
    W.D. Myers and W.J. Swiatecki, (Lawrence Berkeley National Laboratory, LBL-36803, 1994 ).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Thorsten Rubehn
    • 1
  • Kexing Jing
    • 1
  • Luciano G. Moretto
    • 1
  • Larry Phair
    • 1
  • Kin Tso
    • 1
  • Gordon J. Wozniak
    • 1
  1. 1.Nuclear Science Division, Lawrence Berkeley National LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations