Search for the Decay of Non-Compact Geometries

  • N. T. B. Stone
  • G. D. Westfall
  • E. E. Gualtieri
  • S. A. Hannuschke
  • R. Lacey
  • J. Lauret
  • W. J. Llope
  • R. Pak
  • O. Bjarki
  • A. M. Vander Molen
  • J. Yee

Abstract

Recent theoretical calculations have raised one of the most intriguing questions today in intermediate energy nuclear physics. This question concerns the formation of exotic shapes in nuclear matter. There have been many theorists, using a rich diversity of models to simulate nuclear dynamics, who have predicted the occurrence of such shapes.[1–5] The title “non-compact geometries” refers to the position-space distribution of the nucleons of a combined nuclear system shortly after a nucleus-nucleus collision, and implies short-lived configurations with novel shapes, e.g. toroids or bubbles. A solid sphere is the geometrical configuration with the minimum surface area for a given volume, i.e., the most compact shape. In this light, any shape other than a sphere can be called “non-compact.”

Keywords

Beam Energy Central Collision Minimum Surface Area Incident Beam Energy Recent Theoretical Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Bauer, G.F. Bertsch, and H. Schulz, “Bubble and Ring Formation in Nuclear Fragmentation,” Phys. Rev. Lett. 69: 1888 (1992).ADSCrossRefGoogle Scholar
  2. 2.
    L.G. Moretto, K.Tso, N. Colonna, and G.J. Wozniak, “New Rayleigh-Taylor-Like Surface Instability and Nuclear Multifragmentation,” Phys. Rev. Lett. 69: 1884 (1992).ADSGoogle Scholar
  3. 3.
    H.M. Xu, et al., “Formation and Decay of Toroidal and Bubble Nuclei and the Nuclear Equation of State,” Phys. Rev. C48: 933 (1993).ADSGoogle Scholar
  4. 4.
    D.H.E. Gross, B.A. Li, and A.R. DeAngelis, “Donuts in Nuclear Fragmentation?” Ann Physik 1: 467 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    S.R. Souza and C.Ngô, “Exotic Density Shapes in Asymmetric Heavy Ion Collisions at Intermediate Bombarding Energies,” Phys. Rev. C48: R2555 (1993).ADSGoogle Scholar
  6. 6.
    A. Guarnera, B. Jacquot, P. Chomaz, and M. Colonna, “First Order Phase Transitions in Nuclei,” GA NIL Preprint P95–05 (1995).Google Scholar
  7. 7.
    L. Phair, W. Bauer, and C.K. Gelbke, “Percolation with Bubbles and Toroids,” MSU Preprint MSUCL-890 (1993).Google Scholar
  8. 8.
    T. Glasmacher, C. Gelbke, and S. Pratt, “Detecting Multifragment Disintegration of Toroidal and Disk-Shaped Nuclear Configurations,” MSU Preprint MSUCL-893, Submitted to Phys. Lett. B (1993).Google Scholar
  9. 9.
    D. Durand, et al., “Evidence for the Formation of Toroidal Structures in Very Central Pb+Au Collisions at 29 MeV/u,” LPC CAEN Preprint LPCC96–02, Submitted to Phys. Lett. (1996).Google Scholar
  10. 10.
    G.D. Westfall, et al., “A Logarithmic Detection System Suitable for a 47r Array,” Nucl. Inst. Meth. A238: 347 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    C. Cavata, et al., “Determination of the Impact Parameter in Relativistic Nucleus-Nucleus Collisions,” Phys. Rev. C42: 1760 (1990).ADSGoogle Scholar
  12. 12.
    J. Cugnon and D. L’ilote, “Global Variables and the Dynamics of Relativistic Nucleus-Nucleus Collisions,” Nue. Phys. A397: 519 (1983).ADSGoogle Scholar
  13. 13.
    E.E. Gualtieri, Ph.D. Dissertation, Michigan State University, 1995 ( Unpublished).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • N. T. B. Stone
    • 1
  • G. D. Westfall
    • 1
  • E. E. Gualtieri
    • 1
  • S. A. Hannuschke
    • 1
  • R. Lacey
    • 2
  • J. Lauret
    • 2
  • W. J. Llope
    • 1
  • R. Pak
    • 1
  • O. Bjarki
    • 1
  • A. M. Vander Molen
    • 1
  • J. Yee
    • 1
  1. 1.National Superconducting Cyclotron LaboratoryMichigan State UniversityEast LansingUSA
  2. 2.Department of ChemistryState University of New York - Stony BrookStony BrookUSA

Personalised recommendations