Vector Meson Production in Heavy Ion Collisions

  • Arndt Brenschede


Heavy ion collisions in the energy regime of 1–2 AGeV offer the possibility to study hot and dense hadronic matter under laboratory conditions. Densities of up to three times normal nuclear matter density are reached, where theoretical models[1] predict a partial restoration of chiral symmetry. In vacuum, chiral symmetry is spontanously broken, leading to the constituent quark masses of about 300 MeV/c2. One can assume that chiral symmetry restoration will also affect the properties of hadrons inside compressed hadronic. matter. This is also of practical interest for microscopic transport models like BUU or QMD, which need these properties as input to describe the dynamics of heavy ion collisions.


Chiral Symmetry Vector Meson Cherenkov Light Constituent Quark Masse Chiral Symmetry Restoration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Klimt, M. Lutz and W. Weise, Chiral phase transition in the SU(3) Nambu and Jona-Lasinio model, Physics Letters B 249, No. 3,4 (1990) 386–390Google Scholar
  2. 2.
    W. Cassing et al.Phys. Rep. 188(1990)363Google Scholar
  3. 3.
    L. G. LandsbergPhysics Reports 128, No. 6 (1985) 301–376 and references hereinGoogle Scholar
  4. 4.
    R. BertiniNuclear Physics A585(1995)265c-270cGoogle Scholar
  5. 5.
    A. MaggioraNuclear Physics News Vol.5 No. 4(1995)23Google Scholar
  6. 6.
    M.W. Arenton et al, Phys. Rev. D25(1982)22Google Scholar
  7. 7.
    V. Blobel et al., Phys. Lett. B59 (1975) 88Google Scholar
  8. 8.
    R. Baldi et al., Phys. Lett. B68 (1977) 381Google Scholar
  9. 9.
    S. Okuba Phys. Lett. B5 (1965) 165; G. Zweig, CERN Report No. 8419/TH412 (1964) unpub- lished; I. Iuzuka, Prog. Theor. Phys. Suppl. 37–38, 21 (1966)ADSGoogle Scholar
  10. 10.
    M. Abolins et al., Phys. Rev. Lett. 11 (1963) 381ADSCrossRefGoogle Scholar
  11. 11.
    D. Ayres et al., Phys. Rev. Lett. 32 (1974) 1463ADSCrossRefGoogle Scholar
  12. 12.
    D. Cohen et al., Phys. Rev. Lett. 38 (1977) 269ADSCrossRefGoogle Scholar
  13. 13.
    P.L. Woodworth et al., Phys. Lett. B65 (1976) 89Google Scholar
  14. 14.
    M.A. Faessler et al., Proc. NAN-93 Conference Moscow, 1993; Phys. At. Nuclei 57 (1994) 1693Google Scholar
  15. 15.
    J. Ellis et. al., Preprint CERN-TH.7326/94Google Scholar
  16. 16.

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Arndt Brenschede
    • 1
  1. 1.Univ. GießenGermany

Personalised recommendations