An Image-Capture and Data-Collection System for Morphometric Analysis

  • András Demeter
  • János Vámosi
  • Laszló Peregovits
  • György Topál
Chapter
Part of the NATO ASI Series book series (NSSA, volume 284)

Abstract

We describe a video data-acquisition system called Budapest Video and its software component IMAGOES, designed to collect two-dimensional landmark and outline data. Various calibration tests on linear scales and biological specimens show that the accuracy of the system may exceed the resolution of landmarks on biological specimens. The software was designed to help the user collect landmark data by developing training sets of landmarks. The results of fitting elliptical Fourier analysis to outlines may be visually inspected by plotting the captured and reconstructed outlines simultaneously.

Keywords

Morphometric Analysis Lingual Side NATO Advance Study Institute Landmark Data Video Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becerra, J. M., E. Bello and A. Garcia-Valdecasas. 1993. Building your own machine image system for morphometric analysis: A user point of view. Pages 65–92 in: L. F. Marcus, E. Bello and A. Garcia-Valdecasas, (eds.), Contributions to morphometrics. Monografias del Museo Nacional de Ciencias Naturales 8, Madrid.Google Scholar
  2. Bookstein, F. L. 1991. Morphometric tools for landmark data. Geometry and biology. Cambridge University Press: Cambridge.Google Scholar
  3. Fink, W. L. 1990. Data acquisition for morphometric analysis in systematic biology. Pages 9–19 In: F. J. Rohlf and F. L. Bookstein, (eds.), Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication No. 2: Ann Arbor.Google Scholar
  4. Francis, R. I. C. C., and R. H. Mattlin. 1986. A possible pitfall in the morphometric application of discriminant analysis: Measurement bias. Marine Biology 93: 311–313.CrossRefGoogle Scholar
  5. Kuhl, F. P., and C. R. Giardina. 1982. Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18: 236–258.CrossRefGoogle Scholar
  6. MacLeod, N. 1990. Digital images and automated image analysis systems. Pages 21–35 In: F. J. Rohlf and F. L. Bookstein, (eds.), Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication No. 2: Ann Arbor.Google Scholar
  7. MacLarnon, Ann M. 1989. Application of the Reflex instruments in quantitative morphology. Folia Primatologica 53: 33–49.CrossRefGoogle Scholar
  8. Meacham, C. A. 1992. Practical machine vision for morphometric data acquisition. Pages 113–126 In: J. T. Sorensen and R. Footit, (eds.), Ordination in the study of morphology, evolution and systematics of insects: application of quantitative genetic rationales. Elsevier: Amsterdam.Google Scholar
  9. Meacham, C. A. 1993. MorphoSys: an interactive machine vision program for acquisition of morphometric data. Pages 393–402 In: R. Fortuner, (ed.), Advances in computer methods for systematic biology. Artificial intelligence, databases, computer vision. Johns Hopkins University Press: Baltimore, Maryland.Google Scholar
  10. Rohlf, F. J. 1990a. An overview of image processing and analysis techniques for morphometrics. Pages 37–60 In: F. J. Rohlf and F. L. Bookstein, (eds.), Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication No. 2: Ann Arbor.Google Scholar
  11. Rohlf, F. J. 1990b. NTSYS-pc. Numerical taxonomy and multivariate analysis system. Version 1. 6. Exeter: Setauket, New York.Google Scholar
  12. Rohlf, F. J. 1990c. Fitting curves to outlines. Pages 167–177 In: F. J. Rohlf and F. L. Bookstein, (eds.), Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication No. 2.Google Scholar
  13. Rohlf, F. J. 1993a. Computer vision needs in systematic biology. Pages 365–373 In: R. Fortuner, (ed.), Advances in computer methods for systematic biology. Artificial intelligence, databases, computer vision. Johns Hopkins University Press: Baltimore, Maryland.Google Scholar
  14. Rohlf, F. J. 1993b. Feature extraction in systematic biology. Pages 375–392 In: R. Fortuner, (ed.), Advances in computer methods for systematic biology. Artificial intelligence, databases, computer vision. Johns Hopkins University Press: Baltimore, Maryland.Google Scholar
  15. Rohlf, F. J. and Archie, J. W. 1984. A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae). Systematic Zoology 33: 302–317.CrossRefGoogle Scholar
  16. Rohlf, F. J. and L. F. Marcus. 1993. A revolution in morphometrics. Trends in Ecology and Evolution 8: 129–132.CrossRefGoogle Scholar
  17. Topál, G. 1985. Pliocene species of Myotis from Hungary. Acta Zoologica Fennica 170: 153–155.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • András Demeter
    • 1
    • 2
  • János Vámosi
    • 3
  • Laszló Peregovits
    • 2
  • György Topál
    • 2
  1. 1.Secretariat of the Hungarian Academy of SciencesBudapestHungary
  2. 2.Institute of Nuclear Research of the Hungarian Academy of SciencesDebrecenHungary
  3. 3.Zoological DepartmentHungarian Natural History MuseumBudapestHungary

Personalised recommendations