Skip to main content

Three-Dimensional Data Capture and Visualization

  • Chapter
Advances in Morphometrics

Part of the book series: NATO ASI Series ((NSSA,volume 284))

Abstract

Three-dimensional (3D) digitization of biological specimens overcomes many of the problems of specimen registration attendant when using “standard” two-dimensional views or projections. External surfaces can be digitized directly by hand with electromagnetic, laser-light, sound, servo-mechanism and stereophotogrammetric devices, which are reviewed here. Single-point source laser-light devices are generally the most precise. Data may be captured directly from external or internal surfaces as adjoining tomographic slices (e.g., microscope; CT, and MR not reviewed here). The resulting stack of slices may be used to produce an isosurface image. There are a great many visualization environments available, some of which are briefly described, that facilitate the construction of isosurface images and measurement collection from Three-dimensional images. Three-dimensional models of Three-Dimensional image data are usually “printed” in plastic via a variety of new technologies briefly summarized.

The next great surge in morphometrics will involve the superb new technology of high-speed workstations. (Bookstein, 1991)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bookstein, F. L. 1991 Morphometric tools for landmark data: Geometry and biology. Cambridge University Press: Cambridge.

    Google Scholar 

  • Coatrieux J. L. and C. Barillot 1990 A survey of 3D display techniques to render medical data. Pages 175–195 in K. H. Hoëhne, H. Fuchs, S. M. Pizer, (eds.) 3D imaging in medicine. Springer-Verlag: Berlin.

    Chapter  Google Scholar 

  • Corner, B. D., S. Lele, and J. T. Richtsmeier. 1992. Measurement error of 3D landmark data. Quantitative Anthropology 3: 347–359.

    Google Scholar 

  • Corner, B., and J. T. Richtsmeier 1992 Cranial growth in the Squirrel monkey (Saimuri sciureus): A quantitative analysis using 3D coordinate data. American Journal of Physical Anthropology 87: 67–81.

    Article  PubMed  CAS  Google Scholar 

  • Cutting, C. B., J. G. McCarthy, and D. B. Karron. 1988. 3D input of body surface data using a laser light scanner. Annals of Plastic Surgery 21: 38–45.

    Google Scholar 

  • Fruhauf, M. 1991. Volume visualization on workstations: Image quality and efficiency of different techniques. Comput. and Graphics 15: 101–107.

    Google Scholar 

  • Jacobs, P. 1993. Stereolithography: From art to part. Cutting Tool Engineering 45: l-3.

    Google Scholar 

  • Kalvin A. D. 1991. Segmentation and surface-based modeling of objects in 3D biomedical images. Ph.D. dissertation: New York University.

    Google Scholar 

  • Kalvin, A. D., C. B. Cutting, B. Haddad, and M. Noz. 1991. Constructing topologically connected surfaces for the comprehensive analysis of 3D medical structures. SPIE 1445: 247–258.

    Article  Google Scholar 

  • Kalvin A. D., D. Dean, J.-J. Hublin, and M. Braun. 1992. Visualization in anthropology: Reconstruction of human fossils from multiple pieces. Pages. 404–420 in A. E. Kaufman and G. M. Nielson, (eds.). Proceedings of IEEE Visualization ‘82.

    Google Scholar 

  • Krieg, J. C., H. R. Jones, A. G. Rodgers, and M. R. Schneider. 1992. A 4 millisecond, low latency, 120 Hz, electromagnetic tracker for virtual reality applications. Internal Application Note, Polhemus.

    Google Scholar 

  • Lele, S., and J. T. Richtsmeier. 1992. On comparing biological shapes: Detection of influential landmarks. American Journal of Physical Anthropology 87: 49–65.

    Google Scholar 

  • MacLarnon, A. M. 1989. Applications of the Reflex instruments in quantitative morphology. Folia Primatologica 53: 33–49.

    Article  CAS  Google Scholar 

  • Magnusson, M., R. Lenz, and P. E. Danielsson. 1991. Evaluation of methods for shaded surface display of CT volumes. Comput. Med. Imaging Graph. 15: 247–256.

    Google Scholar 

  • Raab, F. H., E. B. Blod, T. O. Steiner, and H. R. Jones 1979 Magnetic position and orientation tracking system. IEEE Trans. Aerospace and Elec. Sys. 15: 709–718.

    Google Scholar 

  • Richtsmeier, J. T., and A. Walker 1993. A morphometric study of facial growth. Pages 391–410 in A Walker and R Leakey (eds.), The Nariokotome Homo erectus skeleton. Harvard University Press: Cambridge.

    Chapter  Google Scholar 

  • Robb, A. R., and D. P. Hanson. 1991. A software system for interactive and quantitative visualization of multidimensional biomedical images. Austral. Phys. and Eng. Sci. in Med. 14: 9–30.

    Google Scholar 

  • Rogowitz, B. E., and L. A. Treinish. 1993. An architecture for rule-based visualization. Proceedings of IEEE Visualization `93: 236–234.

    Google Scholar 

  • Sandeman, D. R., N. Patel, C. Chandler, R. J. Nelson, H. B. Coakham, and H. B. Griffith. 1992. Advances in image directed neurosurgery: Preliminary experience with the ISG Viewing Wand compared with the Leksell G frame. Clinical MRI 2: 91–92.

    Google Scholar 

  • Udupa, J. K., and D. Odhner. 1993. Shell rendering. IEEE Comp. Graphics and Applic. 27: 58–67.

    Google Scholar 

  • Udupa, J. K., K. I. Goncalves, D. Narendula, D. Odhner, S. Samarasekera, and S. Sharma. 1993.3DVIEWNIX: An open, transportable software system for the visualization and analysis of multidimensional, multimodality, multiparametric images. SPIE 1897: 47–58.

    Google Scholar 

  • Vannier, M. W., and G. C. Conroy. 1989. Imaging workstations for computer-aided primatology: Promises and pitfalls. Folia Primatologica 53: 7–21.

    Google Scholar 

  • Vinarub, E. I., and N. Kapoor. 1992. 3D digitizing hidden surface using borescopic sensor technology. Proc. App. Machine Vision Conf. ‘82: MS92 160: 1–11.

    Google Scholar 

  • Wohlers, T. T. 1992. 3D Digitizers. Computer Graphics World 2: 73–77.

    Google Scholar 

  • Zinreich, J. S., S. A. Tebo, D. M. Long, H. Brem, D. E. Mattox, M. E. Loury, C. A. Vander Kolk, W. M. Koch, D. W. Kennedy, and R. N. Bryan. 1993. Frameless stereotaxic integration of CT imaging data: Accuracy and initial applications. Radiology 188: 735–742.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dean, D. (1996). Three-Dimensional Data Capture and Visualization. In: Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P., Slice, D.E. (eds) Advances in Morphometrics. NATO ASI Series, vol 284. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9083-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9083-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9085-6

  • Online ISBN: 978-1-4757-9083-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics