Identification of House Mice, Mus musculus, and Mound-Building Mice, M. spicilegus, Based on Distance and Landmark Data

  • András Demeter
  • Gábor Rácz
  • Gábor Csorba
Part of the NATO ASI Series book series (NSSA, volume 284)


Festing’s (1972) distance measurements and Bookstein’s (1991) shape variables, based on 15 landmarks digitized from the left mandible were used as input for discriminant function analyses of house mice, Mus musculus, and mound-building mice, M. spicilegus, in Hungary. The distance variable resulted in better separation of the training sets than did the shape variables, but both methods performed equally poorly when allocating unknowns from owl pellets. The lack of discriminatory power is probably due to heterogeneity in size (and probably age) distribution among the unknown samples.


Shape Variable House Mouse Coronoid Process Centroid Size Discriminant Function Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atchley, W. R., D. E. Cowley, C. Vogl, and T. McLellan. 1992. Evolutionary divergence, shape change, and genetic correlation structure in the rodent mandible. Systematic Biology 41: 196–221.Google Scholar
  2. Auffray, J.-C., F. Vanlerberghe and J. Britton-Davidian. 1990. The house mouse progression in Eurasia: A palaeontological and archaeozoological approach. Biological Journal of the Linnean Society 41: 1325.Google Scholar
  3. Bonhomme. F., J. Catalan, J. Britton-Davidian. V. M. Chapman, K. Moriwaki, E. Nevo and L. Thaler. 1984. Biochemical diversity and evolution in the genus Mus. Biochemical Genetics 22: 275–303.CrossRefGoogle Scholar
  4. Bookstein, F. L. 1991. Morphometric tools for landmark data: Geometry and biology. Cambridge University Press: Cambridge.Google Scholar
  5. Boursot, P., J.-C. Auffray, J. Britton-Davidian and F. Bonhomme. 1993. The evolution of house mice. Annual Review of Ecology and Systematics 24: 119–152.CrossRefGoogle Scholar
  6. Corti, M. 1992. Data analysis in systematics: A workshop and a manual to introduce geometric morphometries. ICOLATER, Caracas, Venezuela (Document accessible through anonymous from Appendix III for instructions )Google Scholar
  7. Corti, M. and R. S. Thorpe. 1989. Morphological clines across a karyotypic zone of house mice in central Italy. Journal of Evolutionary Biology 2: 253–264.CrossRefGoogle Scholar
  8. Davis, S. J. M. 1983. Morphometric variation of populations of house mice Mus domesticus in Britain and Faroe. Journal of Zoology (London) 199: 521–534.CrossRefGoogle Scholar
  9. Demeter, A. and P. Lazér. 1984. Morphometric analysis of field mice Apodemus: character selection for routine identification ( Mammalia ). Annales Historico-Naturales Musei Nationalis Hungarici 76: 297–322.Google Scholar
  10. Demeter, A., G. Lörincz, Zs. Krajcsik and Cs. Moskât. 1989. Mapping mammal distribution with the Hungarian Natural History Museum’s computerized database. Abstract. Fifth International Theriological Congress, Rome: 900.Google Scholar
  11. Demeter, A. and G. Topai. 1987. Mammals of the Kiskunsag. Pages 446–452 in S. Mahunka, (ed.), The fauna of the Kiskunség National Park, Volume II. Akadémiai Kiadó: Budapest.Google Scholar
  12. Festing, M. 1972. Mouse strain identification. Nature 238:351-–352.Google Scholar
  13. Flury, B. D., J.-P. Airoldi, and J.-P. Biber. 1992. Gender identification of water pipits (Anthus spinoletta) using mixtures of distribution. Journal of Theoretical Biology 158: 465–480.CrossRefGoogle Scholar
  14. James, F. C. and C. E. McCutlogh. 1990. Multivariate analysis in ecology and systematics: Panacea or Pandora’s box? Annual Review of Ecology and Systematics 21: 129–166.Google Scholar
  15. Krzanowski, W. J. 1988. Principles of multivariate analysis. A user’s perspective. Oxford University Press: Oxford.Google Scholar
  16. Marcus, L. F. 1990. Traditional morphometrics. Pages 77–122 in F. J. Rohlf and F. L. Bookstein, (eds.),. Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication 2.Google Scholar
  17. Marcus L. F. 1993. Some aspects of multivariate statistics for morphometrics. Pages 95–130 in L. F. Marcus, E. Bello and A. Garcia-Valdecasas, (eds.), Contributions to morphometrics. Monografias del Museo Nacional de Ciencias Naturales 8, Madrid.Google Scholar
  18. Marshall, J. T. (in prep.) Taxonomy of European Mus (Mammalia: Muridae).Google Scholar
  19. McLachlan, G. J. 1992. Discriminant analysis and statistical pattern recognition. Wiley: New York. Mikkola, H. 1983. Owls of Europe. Buteo Books: Vermillion.CrossRefGoogle Scholar
  20. Norusis, M. J. 1990. SPSS/PC+ Advanced Statistics TM 4.0 for the IBM PC/XT/AT and PS/2. SPSS: Chicago.Google Scholar
  21. Orsini, F., J. Bonhomme, J. Britton-Davidian, H. Croset, S. Gerasimov and L. Thaler. 1983. Le complexe d’espéces du genre Mus en Europe Centrale et Orientale. II. Critères d’identification, répartition et caractéristiques écologiques. Zeitschrift für Säugetierkunde 48: 86–95.Google Scholar
  22. Rohlf, F. J., and L. F. Marcus. 1993. A revolution in morphometrics. Trends in Ecology and Evolution 8: 129–132.CrossRefGoogle Scholar
  23. Sage, R. D., W. R. Atchley and E. Capanna. 1993. House mice as models in systematic biology. Systematic Biology 42: 523–561.CrossRefGoogle Scholar
  24. Schmidt, E. 1976. Kleinsäugefaunistische Daten as Eulengewöllen in Ungarn. Aquila 82: 119–144.Google Scholar
  25. Schriven, P. N. and V. Bauchau. 1992. The effect of hybridization on mandible morphology in an island population of the house mouse. Journal of Zoology (London) 226: 573–583.CrossRefGoogle Scholar
  26. Vogl, C., W. R. Atchley, D. E. Cowley, P. Crenshaw, J. D. Murray, and D. Pomp. 1993. The epigenetic influence of growth hormone on skeletal development. Growth, Development and Aging 57: 163–182.Google Scholar
  27. Wilkinson, L. 1990. SYSTAT: The system for statistics. Systat: Evanston, Illinois.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • András Demeter
    • 1
    • 2
  • Gábor Rácz
    • 2
    • 3
  • Gábor Csorba
    • 2
  1. 1.Secretariat of the Hungarian Academy of SciencesBudapestHungary
  2. 2.Zoological DepartmentHungarian Natural History MuseumBudapestHungary
  3. 3.Department of GeneticsEötvös UniversityBudapestHungary

Personalised recommendations