Multivariate Allometry

  • Christian Peter Klingenberg
Part of the NATO ASI Series book series (NSSA, volume 284)


The subject of allometry is variation in morphometric variables or other features of organisms associated with variation in size. Such variation can be produced by several biological phenomena, and three different levels of allometry are therefore distinguished: static allometry reflects individual variation within a population and age class, ontogenetic allometry is due to growth processes, and evolutionary allometry is the result of phylogenetic variation among taxa. Most multivariate studies of allometry have used principal component analysis. I review the traditional technique, which can be interpreted as a least-squares fit of a straight line to the scatter of data points in a multidimensional space spanned by the morphometric variables. I also summarize some recent developments extending principal component analysis to multiple groups. “Size correction” for comparisons between groups of organisms is an important application of allometry in morphometrics. I recommend use of Burnaby’s technique for “size correction” and compare it with some similar approaches. The procedures described herein are applied to a data set on geographic variation in the waterstrider Gerris costae (Insecta: Heteroptera: Gerridae). In this example, I use the bootstrap technique to compute standard errors and perform statistical tests. Finally, I contrast this approach to the study of allometry with some alternatives, such as factor analytic and geometric approaches, and briefly analyze the different notions of allometry upon which these approaches are based.


Growth Vector Systematic Zoology Allometric Coefficient Negative Allometry Middle Femur 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Airoldi, J.-P., and B. K. Flury. 1988. An application of common principal component analysis to cranial morphometry ofMicrotus cali/ornicus and M. ochrogaster (Mammalia, Rodentia ). Journal of Zoology (London) 216: 21–36.Google Scholar
  2. Anderson, T. W. 1963. Asymptotic theory for principal component analysis. Annals of Mathematical Statistics 34: 122–148.CrossRefGoogle Scholar
  3. Anstey, R. L. 1987. Astogeny and phylogeny: Evolutionary heterochrony in Paleozoic bryozoans. Paleobiology 13: 20–43.Google Scholar
  4. Arnold, S. J. 1992. Constraints on phenotypic evolution. American Naturalist 140:S85-S 107.Google Scholar
  5. Atchley, W. R., and B. K. Hall. 1991. A model for development and evolution of complex morphological structures. Biological Reviews 66: 101–157.PubMedCrossRefGoogle Scholar
  6. Bernays, E. A. 1986. Diet-induced head allometry among foliage-chewing insects and its importance for graminivores. Science 231: 495–497.PubMedCrossRefGoogle Scholar
  7. Blackstone, N. W. 1987. Specific growth rates of parts in a hennit crab Paguru.s longicarpu.s: A reductionist approach to the study of allometry. Journal of Zoology (London) 211: 531–545.Google Scholar
  8. Boag, P. T. 1984. Growth and allometry of external morphology in Darwin’s finches (Geospiza) on Isla Daphne Major, Galapagos. Journal of Zoology (London) 204: 413–441.Google Scholar
  9. Boitard, M., J. Lefebvre, and M. Solignac. 1982. Analyse en composantes principales de la variabilité de taille, de croissance et de conformation des espèces du complexe Jaera albifrons ( Crustacés Isopodes ). Cahiers de Biologie Marine 23: 115–142.Google Scholar
  10. Bookstein, F. L. 1989. “Size and shape”: A comment on semantics. Systematic Zoology 38:173–180.Google Scholar
  11. Bookstein, F. L. 1991. Morphometric tools for landmark data: Geometry and biology. Cambridge University Press: Cambridge.Google Scholar
  12. Bookstein, F. L. 1993. A brief history of the morphometric synthesis. Pages 15–40 in L. F. Marcus, E. Bello, and A. Garcia-Valdecasas, (eds.), Contributions to morphometrics. Monografias del Museo Nacional de Ciencias Naturales 8, Madrid.Google Scholar
  13. Bookstein, F. L., B. Chernoff, R. L. Elder, J. M. Humphries, Jr., G. R. Smith, and R. E. Strauss. 1985. Morphometrics in Evolutionary Biology: The geometry of size and shape change, with examples from fishes. Academy of Natural Sciences of Philadelphia Special Publication 15.Google Scholar
  14. Bryant, P. 1984. Geometry, statistics, probability: Variations on a common theme. American Statistician 38: 38–48.Google Scholar
  15. Burnaby, T. P. 1966. Growth-invariant discriminant functions and generalized distances. Biometrics 22: 96–110.CrossRefGoogle Scholar
  16. Buss, L. W., and N. W. Blackstone. 1991. An experimental exploration of Waddington’s epigenetic landscape. Philosophical Transactions of the Royal Society of London B 332: 49–58.CrossRefGoogle Scholar
  17. Cane, W. P. 1993. The ontogeny of postcranial integration in the common tern, Sterna hirundo. Evolution 47: 1138–1151.CrossRefGoogle Scholar
  18. Cheverud, J. M. 1982. Relationships among ontogenetic, static, and evolutionary allometry. American Journal of Physical Anthropology 59: 139–149.PubMedCrossRefGoogle Scholar
  19. Cheverud, J. M., G. P. Wagner, and M. M. Dow. 1989. Methods for the comparative analysis of variation patterns. Systematic Zoology 38: 201–213.CrossRefGoogle Scholar
  20. Cock, A. G. 1966. Genetical aspects of metrical growth and form in animals. Quarterly Review of Biology 41: 131–190.PubMedCrossRefGoogle Scholar
  21. Corner, B. D., and J. T. Richtsmeier. 1991. Morphometric analysis of craniofacial growth in Cehas apella. American Journal of Physical Anthropology 84: 323–342.PubMedCrossRefGoogle Scholar
  22. Corti, M., R. S. Thorpe, L. Sola, V. Sbordoni, and S. Cataudella. 1988. Multivariate morphometrics in aquaculture: A case study of six stocks of the common carp (Ctprinus carpio) from Italy. Canadian Journal of Fisheries and Aquatic Sciences 45: 1548–1554.CrossRefGoogle Scholar
  23. Cowley, D. E., and W. R. Atchley. 1990. Development and quantitative genetics of correlation structure among body parts of Drosophila melanogaster. American Naturalist 135: 242–268.CrossRefGoogle Scholar
  24. Cowley, D. E., and W. R. Atchley. 1992. Quantitative genetic models for development, epigenetic selection, and phenotypic evolution. Evolution 46: 495–518.CrossRefGoogle Scholar
  25. Creighton, G. K., and R. E. Strauss. 1986. Comparative patterns of growth and development in cricetine rodents and the evolution of ontogeny. Evolution 40: 94–106.CrossRefGoogle Scholar
  26. Cuzin-Roudy, J. 1975. Etude de la variabilité et de l’allométrie de taille chez Notonecta maculata Fabricius ( Insectes, hétéroptères), par les méthodes classiques et par la méthode des composantes principales. Archives de Zoologie Expérimentale et Générale 116: 173–227.Google Scholar
  27. Cuzin-Roudy, J., and Ph. Laval. 1975. A canonical discriminant analysis of post-embryonic development in Notonecta maculata Fabricius ( Insecta: Heteroptera). Growth 39: 251–280.Google Scholar
  28. Darroch, J. N., and J. E. Mosimann. 1985. Canonical and principal components of shape. Biometrika 72: 241–252.CrossRefGoogle Scholar
  29. Daudin, J. J., C. Duby, and P. Trecourt. 1988. Stability of principal component analysis studied by the bootstrap method. Statistics 19: 241–258.CrossRefGoogle Scholar
  30. Davies, R. G., and V. Brown. 1972. A multivariate analysis of postembryonic growth in two species of Ectohius (Dictyoptera: Blattidae ). Journal of Zoology (London) 168: 51–79.Google Scholar
  31. Diaconis, P., and B. Efron. 1983. Computer-intensive methods in statistics. Scientific American 248 (May): 116–130.CrossRefGoogle Scholar
  32. Efron, B., and G. Gong. 1983. A leisurely look at the bootstrap, the jackknife, and cross-validation. American Statistician 37: 36–48.Google Scholar
  33. Efron, B., and R. Tibshirani. 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science 1: 54–77.CrossRefGoogle Scholar
  34. Efron, B., and R. J. Tibshirani. 1993. An introduction to the bootstrap. Chapman and Hall: New York.Google Scholar
  35. Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125: I - 15.Google Scholar
  36. Flury, B. 1988. Common principal components and related multivariate models. Wiley: New York.Google Scholar
  37. Flury, B., and H. Riedwyl. 1988. Multivariate statistics: A practical approach. Chapman and Hall: London.CrossRefGoogle Scholar
  38. Garland, T., Jr., P. H. Harvey, and A. R. Ives. 1992. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology 41: 18–32.Google Scholar
  39. Gibson, A. R., A. J. Baker, and A. Moeed. 1984. Morphometric variation in introduced populations of the common myna (Acridotheres tristis): An application of the jackknife to principal component analysis. Systematic Zoology 33: 408–421.Google Scholar
  40. Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biological Reviews 41: 587–640.PubMedCrossRefGoogle Scholar
  41. Gould, S. J. 1975. Allometry in primates, with emphasis on scaling and the evolution of the brain. Contributions to Primatology 5: 244–292.PubMedGoogle Scholar
  42. Gould, S. J. 1989. A developmental constraint in Carton, with comments on the definition and interpretation of constraint in evolution. Evolution 43: 516–539.CrossRefGoogle Scholar
  43. Gower, J. C. 1976. Growth-free canonical variates and generalized inverses. Bulletin of the Geological Institutions of the University of Uppsala, N. S. 7: 1–10.Google Scholar
  44. Günther, B. 1975. Dimensional analysis and theory of biological similarity. Physiological Reviews 55: 659–699.PubMedGoogle Scholar
  45. Hills, M. 1982. Bivariate versus multivariate allometry: A note on a paper by Jungers and German. American Journal of Physical Anthropology 59: 321–322.Google Scholar
  46. Hopkins, J. W. 1966. Some considerations in multivariate allometry. Biometrics 22: 747–760.CrossRefGoogle Scholar
  47. Humphries, J. M., F. L. Bookstein, B. Chernoff, G. R. Smith, R. L. Elder, and S. G. Poss. 1981. Multivariate discrimination by shape in relation to size. Systematic Zoology 30: 291–308.Google Scholar
  48. Huxley, J. S. 1932. Problems of relative growth. Methuen: London. Reprinted 1972, Dover Publications: New York.Google Scholar
  49. Huxley, J. S., and G. Teissiec 1936. Terminology of relative growth. Nature 137: 780–781.CrossRefGoogle Scholar
  50. Jackson, J. E. 1990. A user’s guide to principal components. Wiley: New York.Google Scholar
  51. Jeune, B., and R. Sattler. 1992. Multivariate analysis in process morphology of plants. Journal of Theoretical Biology 156: 147–167.Google Scholar
  52. Jobson, J. D. 1992. Applied multivariate data analysis. Volume II: Categorical and multivariate methods. Springer-Verlag: New York.CrossRefGoogle Scholar
  53. Johnson, R. A., and D. W. Wichern. 1988. Applied multivariate statistical analysis. 2nd edition. Prentice-Hall: Englewood Cliffs, New Jersey.Google Scholar
  54. Jolicoeur, P. 1963. The multivariate generalization of the allometry equation. Biometrics 19: 497–499.CrossRefGoogle Scholar
  55. Jolliffe, I. T. 1986. Principal component analysis. Springer-Verlag: New York.CrossRefGoogle Scholar
  56. Jones, C. S. 1992. Comparative ontogeny of a wild cucurbit and its derived cultivar. Evolution 46: 1827–1847.CrossRefGoogle Scholar
  57. Jones, C. S. 1993. Heterochrony and heteroblastic leaf development in two subspecies of Cucurbita argyrosperma ( Cucurbitaceae ). American Journal of Botany 80: 778–795.Google Scholar
  58. Jungers, W. L., and R. Z. German. 1981. Ontogenetic and interspecific skeletal allometry in nonhuman primates: Bivariate versus multivariate analysis. American Journal of Physical Anthropology 55: 195–202.Google Scholar
  59. Jungers, W. L., T. M. Cole, III, and D. W. Owsley. 1988. Multivariate analysis of relative growth in the limb bones of Ankara Indians. Growth, Development and Aging 52: 103–107.Google Scholar
  60. Kampny, C. M., T. A. Dickinson, and N. G. Dengler. 1993. Quantitative comparison of floral development in Veronica chamaedrys and Veronicastrum virginicum ( Scrophulariaceae ). American Journal of Botany 80: 449–460.Google Scholar
  61. Katz, M. J. 1980. Allometry formula: A cellular model. Growth 44: 89–96.Google Scholar
  62. Klingenberg, C. P. 1992. Multivariate morphometrics of geographic variation of Gerris costae ( Heteroptera: Gerridae) in Europe. Revue Suisse de Zoologie 99: 11–30.Google Scholar
  63. Klingenberg, C. P., and R. Froese. 1991. A multivariate comparison of allometric growth patterns. Systematic Zoology 40: 410–419.CrossRefGoogle Scholar
  64. Klingenberg, C. P., and J. R. Spence. 1993. Heterochrony and allometry: Lessons from the waterstrider genus Limnoporus. Evolution 47: 1834–1853.CrossRefGoogle Scholar
  65. Klingenberg, C. P., and M. Zimmermann. 1992a. Static, ontogenetic, and evolutionary allometry: A multivariate comparison in nine species of water striders. American Naturalist 140: 601–620.Google Scholar
  66. Klingenberg, C. P., and M. Zimmermann. 1992b. Dyar’s rule and multivariate allometric growth in nine species of waterstriders (Heteroptera: Gerridae ). Journal of Zoology (London) 227: 453–464.Google Scholar
  67. LaBarbera, M. 1989. Analyzing body size as a factor in ecology and evolution. Annual Review of Ecology and Systematics 20: 97–117.CrossRefGoogle Scholar
  68. Laird, A. K. 1965. Dynamics of relative growth. Growth 29: 249–263.PubMedGoogle Scholar
  69. Laird, A. K., A. D. Barton, and S. A. Tyler. 1968. Growth and time: An interpretation of allometry. Growth 32: 347–354.Google Scholar
  70. Leamy, L. and W. Atchley. 1984a. Static and evolutionary allometry of osteometric traits in selected lines of rats. Evolution 38: 47–54.CrossRefGoogle Scholar
  71. Leamy, L., and W. R. Atchley. 1984b. Morphometric integration in the rat (Rattus sp.) scapula. Journal of Zoology (London) 202: 43–56.CrossRefGoogle Scholar
  72. Leamy, L., and D. Bradley. 1982. Static and growth allometry of morphometric traits in randombred house mice. Evolution 36: 1200–1212.CrossRefGoogle Scholar
  73. Lessa, E. P., and J. L. Patton. 1989. Structural constraints, recurrent shapes, and allometry in pocket gophers (genus Thomomys). Biological Journal of the Linnean Society 36: 349–363.CrossRefGoogle Scholar
  74. Livezey, B. C. 1989. Morphometric patterns in Recent and fossil penguins (Ayes, Sphenisciformes ). Journal of Zoology (London) 219: 269–307.Google Scholar
  75. Loehlin, J. C. 1987. Latent variable models: An introduction to factor, path, and structural Analysis. Lawrence Erlbaum Associates: Hillsdale, New Jersey.Google Scholar
  76. MacLeod, N., and J. A. Kitchell. 1990. Morphometrics and evolutionary inference: A case study involving ontogenetic and developmental aspects of foraminiferal evolution. Pages 283–299 in F. J. Rohlf and F. L. Bookstein, (eds.), Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication No. 2: Ann Arbor.Google Scholar
  77. Maddison, W. P., and D. R. Maddison. 1992. MacClade: Analysis of phylogeny and character evolution. Sinauer Associates: Sunderland, Massachusetts.Google Scholar
  78. Manly, B. F. J. 1991. Randomization and Monte Carlo methods in biology. Chapman and Hall: London.CrossRefGoogle Scholar
  79. Marcus, L. F. 1990. Traditional morphometrics. Pages 77–122 in F. J. Rohlf and F. L. Bookstein, (eds.), Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication No. 2: Ann Arbor.Google Scholar
  80. Marcus, L. F. 1993. Some aspects of multivariate statistics for morphometrics. Pages 95–130 in L. F. Marcus, E. Bello, and A. Garcia-Valdecasas, (eds.), Contributions to morphometrics. Monografias del Museo Nacional de Ciencias Naturales 8, Madrid.Google Scholar
  81. Martins, E. P., and T. Garland, Jr. 1991. Phylogenetic analyses of the correlated evolution of continuous characters: A simulation study. Evolution 45: 534–557.Google Scholar
  82. Maynard Smith, J., R. Burian, S. Kauffman, P. Alberch, J. Campbell, B. Goodwin, R. Lande, and L. Wolpert. 1985. Developmental constraints and evolution. Quarterly Review of Biology 60: 265–287.CrossRefGoogle Scholar
  83. McGillivray, W. B. 1985. Size, sexual size dimorphism, and their measurement in Great Horned Owls in Alberta. Canadian Journal of Zoology 63: 2364–2372.CrossRefGoogle Scholar
  84. McLellan, T. 1993. The roles of heterochrony and heteroblasty in the diversification of leaf shapes in Begonia dregei ( Begoniaceae ). American Journal of Botany 80: 796–804.Google Scholar
  85. Meyer, A. 1990. Morphometrics and allometry in the trophically polymorphic cichlid fish, Cichlastoma citrinellum: Alternative adaptations and ontogenetic changes in shape. Journal of Zoology (London) 221: 237–260.Google Scholar
  86. Mosimann, J. E. 1970. Size allometry: Size and shape variables with characterizations of the lognormal and generalized gamma distributions. Journal of the American Statistical Association 65: 930–945.Google Scholar
  87. Mosimann, J. E., and F. C. James. 1979. New statistical methods for allometry with application to Floridared-winged blackbirds. Evolution 33: 444–459.CrossRefGoogle Scholar
  88. Owen, J. G., and M. A. Chmielewski. 1985. On canonical variates analysis and the construction of confidence ellipses in systematic studies. Systematic Zoology 34: 366–374.CrossRefGoogle Scholar
  89. Pagel, M. D., and P. H. Harvey. 1988. Recent developments in the analysis of comparative data. Quarterly Review of Biology 63: 413–440.PubMedCrossRefGoogle Scholar
  90. Pandolfi, J. M. 1988. Heterochrony in colonial marine animals. Pages 135–158 in M. L. McKinney, (ed.), Heterochrony in evolution: A multidisciplinary approach. Plenum Press: New York.CrossRefGoogle Scholar
  91. Patton, J. L., and P. V. Brylski. 1987. Pocket gophers in alfalfa fields: Causes and consequences of habitat-related body size variation. American Naturalist 130: 493–506.Google Scholar
  92. Paulsen, S. M., and H. F. Nijhout. 1993. Phenotypic correlation structure among elements of the color pattern in Precis coenia ( Lepidoptera: Nymphalidae). Evolution 47: 593–618.Google Scholar
  93. Pearson, K. 1901. On lines and planes of closest fit to systems of points in space. Philosophical Magazine and Journal of Science, 6th series 2: 559–572.CrossRefGoogle Scholar
  94. Pimentel, R. A. 1979. Morphometrics: The multivariate analysis of biological data. Kendall/Hunt: Dubuque, Iowa.Google Scholar
  95. Reeve, E. C. R., and J. S. Huxley. 1945. Some problems in the study of allometric growth. Pages 121–156 in W. E. Le Gros Clark and P. B. Medawar (eds.), Essays on growth and form presented to D’Arcy Wentworth Thompson. Clarendon Press: Oxford.Google Scholar
  96. Reilly, S. M. 1990. Comparative ontogeny of cranial shape in salamanders using resistant fit theta rho analysis. Pages 311–321 in. F. J. Rohlf and F. L. Bookstein (eds.), Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology, Special Publication 2.Google Scholar
  97. Reiss, M. J. 1989. The allometry of growth and reproduction. Cambridge University Press: Cambridge, U.K.CrossRefGoogle Scholar
  98. Reyment, R. A. 1991. Multidimensional palaeobiology. Pergamon Press: Oxford.Google Scholar
  99. Reyment, R. A., and C. F. Banfield. 1976. Growth-free canonical variates applied to fossil foraminifers. Bulletin of the Geological Institutions of the University of Uppsala, N. S. 7: 11–21.Google Scholar
  100. Reyment, R. A., R. E. Blackith, and N. A. Campbell. 1984. Multivariate Morphometrics. 2nd edition. Academic Press, London.Google Scholar
  101. Riska, B. 1981. Morphological variation in the horseshoe crab Limulus polyphemus. Evolution 35: 647–658.CrossRefGoogle Scholar
  102. Riska, B. 1986. Some models for development, growth, and morphometric correlation. Evolution 40: 1303 1311.Google Scholar
  103. Riska, B. 1989. Composite traits, selection response, and evolution. Evolution 43: 1172–1191.CrossRefGoogle Scholar
  104. Rohlf, F. J. 1990. Morphometrics. Annual Review of Ecology and Systematics 21: 299–316.CrossRefGoogle Scholar
  105. Rohlf, F. J. 1993. Relative warp analysis and an example of its application to mosquito wings. Pages 131–159 in L. F. Marcus, E. Bello, and A. Garcia-Valdecasas (eds.), Contributions to morphometrics. Monografias del Museo Nacional de Ciencias Naturales 8, Madrid.Google Scholar
  106. Rohlf, F. J., and F. L. Bookstein. 1987. A comment on shearing as a method for “size correction.” Systematic Zoology 36: 356–367.CrossRefGoogle Scholar
  107. Rohlf, F. J., and L. F. Marcus. 1993. A revolution in morphometrics. Trends in Ecology and Evolution 8: 129–132.CrossRefGoogle Scholar
  108. Sattler, R. 1992. Process morphology: Structural dynamics in development and evolution. Canadian Journal of Botany 70: 708–714.Google Scholar
  109. Shea, B. T. 1985. Bivariate and multivariate growth allometry: Statistical and biological considerations. Journal of Zoology (London) 206: 367–390.Google Scholar
  110. Shea, B. T. 1992. Developmental perspective on size change and allometry in evolution. Evolutionary Anthropology 1: 125–134.CrossRefGoogle Scholar
  111. Shea, B. T., R. E. Hammer, R. L. Brinster, and M. R. Ravosa. 1990. Relative growth of the skull and postcranium in giant transgenic mice. Genetical Research, Cambridge 56: 21–34.Google Scholar
  112. Sinervo, B. 1993. The effect of offspring size on physiology and life history. BioScience 43: 210–218.Google Scholar
  113. Smith, L. D., and A. R. Palmer. 1994. Effects of manipulated diet on size and performance of brachyuran crab claws. Science 264: 710–712.PubMedCrossRefGoogle Scholar
  114. Smith, R. J. 1993. Logarithmic transformation bias in allometry. American Journal of Physical Anthropology 90: 215–228.CrossRefGoogle Scholar
  115. Solignac, M., M.-L. Cariou, and M. Wimitzki, 1990. Variability, specificity and evolution of growth gradients in the species complex Jaera albifrons (Isopoda, Asellota ). Crustaceana 59: 121–145.Google Scholar
  116. Somers, K. M. 1986. Multivariate allometry and removal of size with principal components analysis. Systematic Zoology 35: 359–368.CrossRefGoogle Scholar
  117. Somers, K. M. 1989. Allometry, isometry and shape in principal component analysis. Systematic Zoology 38: 169–173.CrossRefGoogle Scholar
  118. Sprent, P. 1972. The mathematics of size and shape. Biometrics 28: 23–37.PubMedCrossRefGoogle Scholar
  119. Stauffer, D. F., E. O. Garton, and R. K. Steinhorst. 1985. A comparison of principal components from real and random data. Ecology 66: 1693–1698.CrossRefGoogle Scholar
  120. Strauss, R. E. 1985. Evolutionary allometry and variation in body form in the South American catfish genus Corydoras ( Callichthyidae ). Systematic Zoology 34: 381–396.Google Scholar
  121. Strauss, R. E. 1990a. Patterns of quantitative variation in lepidopteran wing morphology: The convergent groups Heliconiinae and Ithomiinae ( Papilionoidea: Nymphalidae). Evolution 44: 86–103.Google Scholar
  122. Strauss, R. E. 19906. Heterochronic variation in the developmental timing of cranial ossifications in poecilid fishes (Cyprinodontiformes). Evolution 44: 1558–1567.Google Scholar
  123. Strauss, R. E., and F. L. Bookstein. 1982. The truss: Body form reconstructions in morphometrics. Systematic Zoology 31: 113–135.Google Scholar
  124. Teissier, G. 1955. Allométrie de taille et variabilité chez Maiâ squinado. Archives de Zoologie Expérimentale et Générale 92: 221–264.Google Scholar
  125. Thomas, R. D. K., and W.-E. Reif. 1993. The skeleton space: A finite set of organic designs. Evolution 47: 341–360.Google Scholar
  126. Thorpe, R. S. 1983. A review of the numerical methods for recognizing and analyzing racial differentiation. Pages 404–423 in J. Felsenstein, (ed.), Numerical taxonomy. Springer-Verlag: Berlin.CrossRefGoogle Scholar
  127. Thorpe, R. S., and M. Baez. 1987. Geographic variation within an island: Univariate and multivariate contouring of scalation, size, and shape of the lizard Gallotia galloti. Evolution 41: 256–268.CrossRefGoogle Scholar
  128. Voss, R. S., L. F. Marcus, and P. Escalante. 1990. Morphological evolution in muroid rodents I. Conservative patterns of craniometric covariance and their ontogenetic basis in the neotropical genus Zygodontomys. Evolution 44: 1568–1587.CrossRefGoogle Scholar
  129. Voss, R. S., and L. F. Marcus. 1992. Morphological evolution in muroid rodents II. Craniometric factor divergence in seven neotropical genera, with experimental results from Zygodontomys. Evolution 46: 1918–1934.CrossRefGoogle Scholar
  130. Walker, J. A. 1993. Ontogenetic allometry of threespine stickleback body form using landmark-based morphometrics. Pages 193–214 in L. F. Marcus, E. Bello, and A. Garcia-Valdecasas, (eds.), Contributions to morphometrics. Monografias del Museo Nacional de Ciencias Naturales 8, Madrid.Google Scholar
  131. Wheeler, D. E. 1991. The developmental basis of worker caste polymorphism in ants. American Naturalist 138: 1218–1238.CrossRefGoogle Scholar
  132. Wiig, 0. 1985. Multivariate variation in feral American mink (Mustela vison) from Southern Norway. Journal of Zoology (London) 206: 441–452.CrossRefGoogle Scholar
  133. Wright, S. 1968. Evolution and the genetics of populations. Volume 1. Genetic and biometric foundations. University of Chicago Press: Chicago.Google Scholar
  134. Zelditch, M. L. 1987. Evaluating models of developmental integration in the laboratory rat using confirmatory factor analysis. Systematic Zoology 36: 368–380.CrossRefGoogle Scholar
  135. Zelditch, M. L. 1988. Ontogenetic variation in patterns of phenotypic integration in the laboratory rat. Evolution 42: 28–41.CrossRefGoogle Scholar
  136. Zelditch, M. L., F. L. Bookstein, and B. L. Lundrigan. 1992. Ontogeny of integrated skull growth in the cotton rat Sigmodon fulviventer. Evolution 46: 1164–1180.CrossRefGoogle Scholar
  137. Zelditch, M. L., and A. C. Carmichael. 1989. Ontogenetic variation in patterns of developmental and functional integration in skulls of Sigmodon fulviventer. Evolution 43: 814–824.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Christian Peter Klingenberg
    • 1
  1. 1.Department of Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations