Size and Shape Variation in the Mandible of the Fossorial Rodent Spalax ehrenbergi

A Procrustes Analysis of Three Dimensions
  • Marco Corti
  • Carlo Fadda
  • Shimon Simson
  • Eviatar Nevo
Chapter
Part of the NATO ASI Series book series (NSSA, volume 284)

Abstract

Three-dimensional Procrustes analysis was used to study the variation of mandible size and shape in the fossorial rodent superspecies Spalax ehrenbergi across the four chromosomal species in Israel (2n = 52, 54, 58 and 60) and the Egyptian species (2n = 60). Because the animals use their incisors to dig their underground tunnel systems, we selected the mandible as a potentially rich source of information on phylogenetic and adaptive processes that characterized the evolution of the superspecies during Pleistocene and Holocene times. Eleven landmarks were recorded from the mandible in three dimensions as x, y and z coordinates. Differences in landmark position among populations and species, based on a 3D graphic visualization of the landmarks, were studied after Procrustes Generalized Least Square (GLS) fitting through uni- and multivariate statistical analysis. Sexual dimorphism was found only for size. Size also changes in a consistent pattern for species, geography, soil type and other ecological descriptors. A principal component analysis of the “shape” GLS residuals and the Mahalanobis distances between populations shows a pattern consistent with species differences in chromosomes. This favors a phylogenetic interpretation for the observed pattern of variation. However, Partial Least Squares indicate that the change is also related to geography and current ecology and is associated with the increase in diploid number, suggesting that ecological factors affected speciation.

Keywords

Sexual Dimorphism Generalize Little Square Processus Coronoideus Centroid Size Generalize Little Square 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bookstein, F. L. 1989. “Size and shape”: a comment on semantics. Systematic Zoology, 38: 173–180.Google Scholar
  2. Bookstein, F. L. 199la. Morphometric tools for landmark data: Geometry and biology. Cambridge University Press: Cambridge.Google Scholar
  3. Butler P. M., E. Nevo, A. Beiles and S. Simson. 1993. Variation in molar morphology in the Spalax ehrenbergi superspecies: adaptive and phylogenetic significance. Journal of Zoology, London, 229: 191–216.CrossRefGoogle Scholar
  4. Corti, M. 1992. Data analysis in systematics: a workshop and a manual to introduce geometric morphometrics. (Document accessible through anonymous ftp from life.bio.sunysb.edu - see Appendix II for instructions)Google Scholar
  5. Flynn, L. G., E. Nevo and G. Heth. 1987. Incisor enamel microstructure in the blind mole rats: adaptive and phylogenetic significance. Journal of Mammalogy 68: 500–507.CrossRefGoogle Scholar
  6. Marcus L. F. 1991. Traditional morphometrics. Pages 95–130 in F. J. Rohlf and F. L. Bookstein, (eds.), Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication 2.Google Scholar
  7. Marcus L. F. 1993, Some aspects of multivariate statistics for morphometrics. Pages 95–130 in L. F. Marcus, E. Bello and A. Garcia-Valdecasas, (eds.),Contributions to morphometrics. Monografias del Museo Nacional de Ciencias Naturales 8, Madrid.Google Scholar
  8. Marcus L. F., E. Bello and A. Garcia-Valdecasas (eds.). 1993. Contributions to morphometics, Monografas del Museo Nacional de Ciencias Naturales 8, Madrid.Google Scholar
  9. Morrison, D. F., 1976. Multivariate statistical methods. McGraw Hill: New York.Google Scholar
  10. Nevo E. 1989. Modes of speciation: The nature and the role of peripheral isolates in the origin of species. Pages 205–236 in L. V. Giddings, K. Y. Kaneshiro and W. W. Anderson, (eds.),: Genetics, speciation and the founder principle. Oxford University Press: London.Google Scholar
  11. Nevo E. 1991. Evolutionary theory and processes of active speciation and adaptive radiation in subterranean mole rats, Spalax ehrenbergi superspecies, in Israel. Pages 1–125 in M. K. Hecht, B. Wallace and R. J. Maclntyre, (eds.), Evolutionary Biology, Vol. 25.Google Scholar
  12. Nevo E., A. Beiles, G. Heth, and S. Simson. 1986. Adaptive differentiation of body size in speciating mole rats. Oecologia, 69: 327–333.CrossRefGoogle Scholar
  13. Nevo E., M. Corti, G. Heth, A. Beiles, and S. Simson. 1988. Chromosomal polymorphism in subterranean mole rats and its evolutionary significance. Biological Journal of the Linnean Society, 33: 309–322.CrossRefGoogle Scholar
  14. Nevo E., R. L. Honeycutt, H. Yonekawa, K. Nelson and N. Hanzawa. 1993. Mitochondrial DNA polymorphism is subterranean mole-rats of the Spalax ehrenbergi superspecies in Israel, and its peripheral isolates. Mol. Biol. Evol., 10: 590–604.PubMedGoogle Scholar
  15. Nevo E., S. Simson, G. Heth and A. Beiles. 1992. Adaptive pacifistic behaviour in subterranean mole rats in the Sahara Desert, contrasting and originating from polymorphic aggression in Israeli species. Behaviour, 123: 70–76.CrossRefGoogle Scholar
  16. Nevo E., S. Simson, G. Heth, C. A. Redi, and M. G. Filippucci. 1991. Recent speciation of subterranean mole rats of the Spalax ehrenbergi superspecies in the El-Hammam isolate, northern Egypt. Page 43 in 6th International Colloquium on the Ecology and Taxonomy of small African Mammals, 11–16 August 1991, Mitzpe Ramon, Israel.Google Scholar
  17. Reyment, R. A. 1991. Multidimensional palaeobiology. Pergamon Press: Oxford.Google Scholar
  18. Richtsmeier, J. T., B. D Corner, H. M. Grausz, J. M. Cheverud, and S. E. Danahey. 1993. The role of postnatal growth pattern in the production of facial morphology. Systematic Biology, 42: 307–330.Google Scholar
  19. Rohlf, F. J. 1993. NTSYS-pc. Numerical taxonomy and multivariate analysis system, version 1. 8. Exeter: Setauket, New York.Google Scholar
  20. Rohlf, F. J and F. L. Bookstein (eds.). 1991, Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication 2.Google Scholar
  21. Rohlf F. J and D. Slice. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39: 40–59.CrossRefGoogle Scholar
  22. SAS for Personal Computers. 1993. SAS Institute, version 6. 08 ( Windows). SAS Institute: Cary, North CarolinaGoogle Scholar
  23. Slice, D. 1993. GRF-ND Generalised rotational fitting of n-dimensional landmark data. Department of Ecology and Evolution, State University of New York. Stony Brook, New York 11794.Google Scholar
  24. Streissguth, A. P., F. L. Bookstein, P. D. Sampson, and H. M. Barr. 1993. The enduring effects of prenatal alcohol exposure on child development. University of Michigan Press: Ann Arbor.Google Scholar
  25. Survey of Israel 1970. Atlas of Israel, Ministry of Labor, Jerusalem, Elsevier: AmsterdamGoogle Scholar
  26. Tchernov E. 1968. Successions of Rodent faunas during the Upper Pleistocene of Israel. Paul Parey.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Marco Corti
    • 1
  • Carlo Fadda
    • 1
  • Shimon Simson
    • 2
  • Eviatar Nevo
    • 2
  1. 1.Anatomia Comparata Dipartimento di Biologia Animale e dell’UomoUniversità di Roma ‘La Sapienza’RomaItaly
  2. 2.Institute of EvolutionUniversity of HaifaHaifaIsrael

Personalised recommendations