Wing Venation Variability in Monarthropalpus buxi (Diptera, Cecidomyiidae) and the Quaternary Coevolution of Box (Buxus sempervirens L.) and Its Midge

A Geometrical Morphometric Analysis
  • Michel Baylac
  • Tanguy Daufresne
Part of the NATO ASI Series book series (NSSA, volume 284)


The variability of the wing venation of the box midge, Monarthropalpus buxi, here characterized by six landmarks, is analyzed by geometrical morphometrics. Four localities in France were sampled, covering the northern disjunction in the distribution of box shrubs in Europe. Within- and between-locality analyses indicate that the southern locality is completely separated from the central, western and northern ones. This supports the hypothesis of Parent (1980), who considered the isolated box localities of the northern part of France and Germany to be relicts from the ice age, and is consistent with a close coevolution of box and its midge.

No differences were found between the parti- and univoltine populations of the midge. This result confirms that the dual life cycle of the species is a simple adaptation, originating perhaps during the ice age, but without taxonomic implications.

Sexual dimorphism involves a strong uniform component which corresponds to a stretching of the wing in the male sex, together with a nonuniform expansion of the medial area.


Sexual Dimorphism Mahalanobis Distance Gall Midge Centroid Size Canonical Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnes, H. F. 1948. Gall midges of economic importance. I V. Ornamental Plants and shrubs, Crossby Lockwood, London.Google Scholar
  2. Baylac, M. 1989. Coexistence d’individus univoltins et partivoltins dans les populations de Monarthropalpus buxi (Lab.) du Nord de l’Europe (Diptera, Cecidomyiidae). C.R. Acad. Sci. Paris 308: 337–340.Google Scholar
  3. Baylac, M. 1993. XV: Utilities for 2D coordinates. MNHN. Lab. Entomologie 45, rue Buffon, F75005 Paris.Google Scholar
  4. Bookstein, F. L. 1991 Morphometric tools for landmark data, geometry and biology. Cambridge University Press: Cambridge.Google Scholar
  5. Christ, H. 1913. Über das vorkommen des Buchsbaumes (Buxus sempervirens) in der Schweiz und weiterhin durch Europa und Vorderasien. Vehr. Naturf. Ges. Basel 24: 46–123.Google Scholar
  6. CISIA 1991. Introduction à SPAD.N intégré version pc. CISIA, 1 ay. Herbillon, F-94160 Saint-Mandé.Google Scholar
  7. Cornuet, J. M. 1975. Discrimination et classification de populations d’abeilles à partir de caractères biométriques. Apidologie 6 (2): 145–187.CrossRefGoogle Scholar
  8. Gagné, R. J. 1989. The plant-feeding gall midges of North America. Comstock Publ. Assoc.: Ithaca, New York.Google Scholar
  9. Godwin, H. 1975. The history of the British flora. A factual basis for phytogeography. Cambridge University Press: Cambridge.Google Scholar
  10. Goodall, C. R. and P. B. Green 1986. Quantitative analysis of surface growth. Botanical Gazette 147: 1–15.CrossRefGoogle Scholar
  11. Guillaumin, M. 1972. Analyse des différences de taille (T) et de forme (d5 de Sneath): Comparaison entre individus et entre caractéristiques moyennes de populations de Pyrgus carlinae Rbr. et P. cirsii Rbr. (Lep. Hesperiidae). Arch. Zool. exp. gén. 113: 465–488.Google Scholar
  12. Krezminska, E. 1992. Morphometric study of wing venation in the recent Trichoceridae-an application to the fossils? Acta Zool. cracov. 35 (1): 53–65.Google Scholar
  13. Lenoble, F. and Ch. Broyer 1945. Sur la distribution du Buxus sempervirens en France. Bull. Soc. Bot. Fr. 92: 118–131.Google Scholar
  14. Marcus, L. F. 1990. Traditional morphometrics. Pages 77–122 in F. J. Rohlf and F. Bookstein, (eds.),: Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication 2.Google Scholar
  15. Marcus, L. F. 1993. Appendix: Computer programs. Pages 289–350 in R. E. Reyment. Applied factor analysis in the natural sciences. Cambridge University Press: Cambridge.Google Scholar
  16. Mosimann, J. E. and F. C. James 1979. New statistical methods for allometry with application to Florida red-winged blackbirds. Evolution 33 (1): 444–459.CrossRefGoogle Scholar
  17. Parent, G. H. 1980. Les buxaies mosellanes (France, G. D. de Luxembourg, Allemagne occidentale). Mém. Soc. Roy. Bot. Belg. 8: 1–72.Google Scholar
  18. Richtsmeier, J. T., J. M Cheverud. and S. Lele 1992. Advances in anthropological morphometrics. Annual Review Anthropology 21: 283–305.CrossRefGoogle Scholar
  19. Rohlf, F. J. 1992. TPSREGR-Thin-plate splines regression analysis. Department of Ecology and Evolution, State University of New York, Stony Brook, New York.Google Scholar
  20. Rohlf, F. J. I 993a. Relative warps analysis and an example of its application to mosquito wings. Pages 131–159 in L. F. Marcus, E. Bello and A. Garcia-Valdecasas, (eds.), Contributions to morphometrics. Monografias del Museo Nacional de Ciencias Naturales 8, Madrid.Google Scholar
  21. Rohlf, F. J. 1993b. TPSRW - Thin-plate spline relative warp. Department of Ecology and Evolution, State University of New York, Stony Brook, New York.Google Scholar
  22. Rohlf, F. J. 1993e. Feature extraction in systematic Biology. Pages 375–392 in R. Fortuner (ed.), Advances in computer methods for systematic Biology. Artificial intelligence, databases, computer vision. John Hopkins University Press: Baltimore, Maryland.Google Scholar
  23. Rohlf, F. J. and D. Slice 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39 (1): 40–59.CrossRefGoogle Scholar
  24. Ruttner, F., L. Tassencourt and J. Louveaux 1978. Biometrical-statistical analysis of the geographic variability of Apis mellifera L.. Apidologie 9 (4): 363–381.CrossRefGoogle Scholar
  25. Slice, D. 1993. GRF-ND Generalized rotational fitting of n-dimensional landmark data. Department of Ecology and Evolution. State University of New York. Stony Brook, New York.Google Scholar
  26. Sprent, P. 1972. The mathematics of size and shape. Biometrics 28: 23–38.PubMedCrossRefGoogle Scholar
  27. Updegraff, G., 1990. MeasurementTV, version 1.3. Data Crunch, 304 avenida Adobe, San Clemente, California.Google Scholar
  28. Vanden Berghen, C. 1955. Etude sur les irradiations de plantes méridionales dans la vallée de la Meuse wallone. Bull. Soc. Roy. Bot. Belg. 87: 29–55.Google Scholar
  29. Waldbauer, G. P. 1978. Phenological adaptations and the polymodal emergence patterns of insects. Pages 127–144 in H. Dingle, (ed.), Evolution of insect migration and diapause. Springer-Verlag: New York.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Michel Baylac
    • 1
  • Tanguy Daufresne
    • 1
  1. 1.Muséum National d’Histoire NaturelleLaboratoire d’EntomologieParisFrance

Personalised recommendations