Fluctuating Asymmetry in Mus musculus Subspecific Hybridization

Traditional and Procrustes Comparative Approach
  • Jean-Christophe Auffray
  • Paul Alibert
  • Sabrina Renaud
  • Annie Orth
  • François Bonhomme
Part of the NATO ASI Series book series (NSSA, volume 284)


The traditional approach to fluctuating asymmetry (FA) is compared with an application of the Procrustes superposition method. This comparison was performed on wild-derived and random bred strains of two house mouse subspecies, Mus musculus domesticus and M. m. musculus, originated from Denmark, and their hybrids in a controlled experiment. Results obtained with the Procrustes method show a decrease of FA for the hybrid sample, which is consistent with what was expected from previous FA studies on wild populations. However, no trend was detectable using the traditional approach in that specific case. Additionally, the observed levels of FA compared with those found in wild populations of the hybrid zone in Denmark suggest that the latter are under higher environmental stress than are laboratory-reared animals.


Hybrid Zone House Mouse Fluctuate Asymmetry Directional Asymmetry Hybrid Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alibert, P., S. Renaud, B. Dod, F. Bonhomme, J.-C. Auffray. 1994. Fluctuating asymmetry in the Mus musculus hybrid zone: a heterotic effect in disrupted co-adapted genomes. Proceedings of the Royal Society, London, Biological Sciences 258: 53–59.PubMedGoogle Scholar
  2. Auffray, J.-C., P. Alibert, C. Latieule, and B. Dod. Relative warp analysis of skull shape across the hybrid zone of the house mouse (Mus musculus) in Denmark. Journal of Zoology, London (in press).Google Scholar
  3. Auffray, J.-C., and J. Britton-Davidian. 1992. When did the house mouse colonize Europe? Biological Journal of the Linnean Society 45: 187–190.CrossRefGoogle Scholar
  4. Auffray, J.-C., J. T. Marshall, L. Thaler, and F. Bonhomme. 1990a. Focus on the nomenclature of European species of Mus. Mouse Genome 88: 7–8.Google Scholar
  5. Auffray, J.-C., F. Vanlerberghe, and J. Britton-Davidian. 1990b. The house mouse progression in Eurasia: a palaeontological and archaeozoological approach. Biological Journal of the Linnean Society 41: 13–25.CrossRefGoogle Scholar
  6. Bader, R. S. 1965. Fluctuating asymmetry in the dentition of the house mouse. Journal of Mammalogy 46: 384–388.PubMedCrossRefGoogle Scholar
  7. Barton, N. H., and G. M. Hewitt. 1989. Adaptation, speciation and hybrid zones. Nature 341: 497–503.PubMedCrossRefGoogle Scholar
  8. Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press: Cambridge.Google Scholar
  9. Boursot, P., J.-C. Auffray, J. Britton-Davidian, and F. Bonhomme. 1993. The evolution of house mice. Annual Review of Ecology and Systematics 24: 119–152.CrossRefGoogle Scholar
  10. Boursot, P., F. Bonhomme, J. Britton-Davidian, J. Catalan, and H. Yonekawa 1984. Introgression différentielle des génomes nucléaires et mitochondriaux chez deux semi-espèces de souris. Comptes Rendus de l’Académie des Sciences, Paris. 299: 365–370.Google Scholar
  11. Dod, B., L. S. Jermiin, P. Boursot, V. M. Chapman, J. T. Nielsen, and F. Bonhomme. 1993. Counterselection on sex chromosomes in the Mus musculus European hybrid zone. Journal of Evolutionary Biology 6: 529–546.CrossRefGoogle Scholar
  12. Gerasimov, S., H. Nikolov, V. Mihailova, J.-C. Auffray, and F. Bonhomme. 1990. Morphometric stepwise discriminant analysis of five genetically determined European taxa of the genus Mus. Biological Journal of the Linnean Society 41: 47–64.CrossRefGoogle Scholar
  13. Graham, J. H. 1992. Genomic coadaptation and developmental stability in hybrid zone. Acta Zoologica Fennica 191: 121–131.Google Scholar
  14. Leamy, L. 1984. Morphometric studies in inbred and hybrid mouse. V. Directional and fluctuating asymmetry. American Naturalist 123: 579–593.CrossRefGoogle Scholar
  15. Leamy, L. 1992. Morphometric studies in inbred and hybrid mouse. VII. heterosis in fluctuating asymmetry at different ages. Acta Zoologica Fennica 191: 111–120.Google Scholar
  16. Leamy, L., and W. Atchley. 1985. Directional selection and developmental stability: evidence from fluctuating asymmetry of morphometric characters in rats. Growth 49: 8–18.PubMedGoogle Scholar
  17. Leary, R. F., F. W. Allendorf, and R. L. Knudsen. 1985. Inheritance of meristic variation and the evolution of developmental stability in rainbow trout. Evolution 39: 308–314.CrossRefGoogle Scholar
  18. Lebreton, J.-D., J.-P. Roux, G. Banco, and A.-M. Bakou. 1992. Biomeco (Biometry-Ecology), v. 4. 2. Statistical Ecology Software. Centre d’Ecologie Fonctionnelle et Evolutive, CNRS: MontpellierGoogle Scholar
  19. Lerner, I. M. 1954. Genetic homeostasis. Wiley: New York.Google Scholar
  20. Mitton, J. B. and M. C. Grant. 1984. Associations among protein heterozygosity growth rate, and developmental homeostasis. Annual Review of Ecology and Systematics 15: 479–499.CrossRefGoogle Scholar
  21. Moulia, C., J.-P. Aussel, F. Bonhomme, P. Boursot, J. T. Nielsen, and F. Renaud. 1991. Wormy mice in a hybrid zone: a genetic control of susceptibility to parasite infection. Journal of Evolutionary Biology 4: 679–687.CrossRefGoogle Scholar
  22. Moulia, C., N. Le Brun, J. Dallas, A. Orth, and F. Renaud. 1993. Experimental evidence of genetic determinism in high susceptibility to intestinal pinworms infection in mice: a hybrid zone model. Parasitology 106: 387–393.PubMedCrossRefGoogle Scholar
  23. Palmer, A. R., and C. Strobeck. 1986. Fluctuating asymmetry: measurement, analysis, patterns. Annual Review of Ecology and Systematics 17: 391–421.CrossRefGoogle Scholar
  24. Parsons, P. A. 1992. Fluctuating asymmetry: a biological monitor of environmental and genomic stress. Heredity 68: 361–364.PubMedCrossRefGoogle Scholar
  25. Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.CrossRefGoogle Scholar
  26. Rohlf, F. J. 1990. Rotational fit (Procrustes) methods. Pages 227–236 in F. J. Rohlf and F. Bookstein. (eds.), Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication 2.Google Scholar
  27. Rohlf, F. J., and D. Slice. 1990. Extensions of the Procrustes method for the optimal superposition of landmarks. Systematic Zoology 39: 40–59.CrossRefGoogle Scholar
  28. Sage, R. D., D. Heyneman, K. C. Lim, and A. C. Wilson. 1986. Wormy mice in a hybrid zone. Nature 324: 60–63.PubMedCrossRefGoogle Scholar
  29. Soule, M. E. 1967. Phenetics of natural populations. II. Asymmetry and evolution in a lizard. American Naturalist 101: 141–160.CrossRefGoogle Scholar
  30. Soule, M. E. 1979. Heterozygosity and developmental stability: another look. Evolution 33: 396–401.CrossRefGoogle Scholar
  31. Tucker, P. K., R. D. Sage, J. Wanner, A. C. Wilson, and E. M. Eicher. 1992. Abrupt cline for sex chromosomes in a hybrid zone between species of mice. Evolution 46: 1146–1163.CrossRefGoogle Scholar
  32. Vanlerberghe, F., P. Boursot, J. T. Nielsen, and F. Bonhomme. 1988. A steep Cline for mitochondrial DNA in Danish mice. Genetical Research, Cambridge 52: 185–193.CrossRefGoogle Scholar
  33. Vrijenhoek, R. C., and S. Lerman. 1982. Heterozygosity and developmental stability under sexual and asexual breeding systems. Evolution 36: 768–776.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Jean-Christophe Auffray
    • 1
  • Paul Alibert
    • 1
  • Sabrina Renaud
    • 1
  • Annie Orth
    • 2
  • François Bonhomme
    • 2
  1. 1.Institut des Sciences de l’Evolution, CC064Université Montpellier IIMontpellier CedexFrance
  2. 2.Laboratoire Génome et Populations, CC063Université Montpellier IIMontpellier CedexFrance

Personalised recommendations