Skip to main content

Three-Dimensional Generalized Resistant Fitting and the Comparison of Least-Squares and Resistant-Fit Residuals

  • Chapter
Book cover Advances in Morphometrics

Part of the book series: NATO ASI Series ((NSSA,volume 284))

Abstract

The resistant-fit methods of superimposing configurations of landmarks are extended to three-dimensional data. Algorithms are described for fitting one configuration to another and for the fitting of a sample of configurations to a iteratively estimated consensus configuration. In addition, several topics relating to the practical use of the superimposition methods are discussed. These topics include missing data, visualization of results and the display and interpretation of affine components. Finally, an example is presented of how to use different graphical comparisons of resistant-fit and least-squares (Procrustes) residuals to identify subsets of landmarks contributing to localized shape differences. These procedures are shown to suggest considerable local variation in the posterior region of the carapace of certain individual yellow-bellied slider turtles, Trachemys scripta scripta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anton, H. 1984. Calculus, with analytic geometry. John Wiley & Sons: New York.

    Google Scholar 

  • Bookstein, F. L. 1984. Tensor biometrics for changes in cranial shape. Annals of Human Biology 11: 413–437

    Article  CAS  Google Scholar 

  • Bookstein, F. L. 1989. Principal warps: Thin-plate splines and the decomposition of deformations. I. E. E. E. Transactions on Pattern Analysis and Machine Intelligence 11: 567–585.

    Article  Google Scholar 

  • Bookstein, F. L. 1991. Morphometric tools for landmark data: Geometry and biology. Cambridge University Press: Cambridge.

    Google Scholar 

  • Bookstein, F. L. and P. Sampson. 1987. Statistical models for geometric components of shape change. Pages 18–27 in Proceedings of the Section on Statistical Graphics, 1987 Annual Meeting of the American Statistical Association. American Statistical Association: Alexandria, Virginia.

    Google Scholar 

  • Cagle, F. R. 1950. The life history of the slider turtle, Pseudemys scripta troostii (Holbrook). Ecological Monographs 20 (1): 32–54.

    Article  Google Scholar 

  • Dryden, I. L., and K. V. Mardia. 1991. General shape distributions in a plane. Advances in Applied Probability 23: 259–276.

    Article  Google Scholar 

  • Eves, H. 1966. Elementary matrix theory. Allyn and Bacon, Inc.: Boston.

    Google Scholar 

  • Goodall, C. R. 1991. Procrustes methods in the statistical analysis of shape (with discussion and rejoinder). Journal of the Royal Statistical Society, Series B, 53 (2): 285–339.

    Google Scholar 

  • Goodall, C. R. 1992. Dynamic graphics in non-Euclidean spaces: the visualization and statistical analysis of shape. 1992 Proceedings of the Statistical Graphics Section. American Statistical Association: Alexandria, Virginia.

    Google Scholar 

  • Goodall, C. R., and P. B. Green. 1986. Quantitative analysis of surface growth. Botanical Gazette 147: 1–15.

    Article  Google Scholar 

  • Goodall, C. R., and K. V. Mardia. 1991. A geometrical derivation of the shape density. Advances in Applied Probability 23: 496–514.

    Article  Google Scholar 

  • Gower, J. C. 1970. Statistical methods of comparing different multivariate analyses of the same data. Pages 138–149 in F. R. Hodson, D. G. Kendall, and P. Tautu (eds.), Mathematics in the archaeological and historical sciences. Edinburgh University Press: Edinburgh.

    Google Scholar 

  • Gower, J. C. 1975. Generalized Procrustes analysis. Psychometrika 40: 33–51.

    Article  Google Scholar 

  • Hartman, S. E. 1989. Stereophotographic analysis of occlusal morphology of extant hominoid molars: phenetics and function. American Journal of Physical Anthropology 80 (2): 145–166.

    Article  PubMed  CAS  Google Scholar 

  • Jolicoeur, P., and J. E. Mosimann. 1960. Size and shape variation in the painted turtle, a principal component analysis. Growth 24: 339–354.

    PubMed  CAS  Google Scholar 

  • Mardia, K. V. and I. L. Dryden. 1989. Shape distributions for landmark data. Advances in Applied Probability 21: 742–755.

    Article  Google Scholar 

  • Mosier, C. I. 1939. Determining a simple structure when loadings for certain tests are known. Psychometrika 4: 149–162.

    Article  Google Scholar 

  • Rohlf, F. J. and L. F. Marcus. 1993. A revolution in morphometrics. Trends in Ecology and Evolution 8 (4): 129–132.

    Article  Google Scholar 

  • Rohlf, F. J., and D. E. Slice. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology. 39: 40–59.

    Article  Google Scholar 

  • Siegel, A. F., and R. H. Benson. 1982. A robust comparison of biological shapes. Biometrics 38: 341–350.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, A. F., and J. R. Pinkerton. 1982. Robust comparison of three-dimensional shapes with an application to protein molecule configurations. Technical Report 217, Series 2, Department of Statistics, Princeton University.

    Google Scholar 

  • Slice, D. E. 1991. DS-DIGIT: Basic digitizing software. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York 117–94.

    Google Scholar 

  • Slice, D. E. 1993. Extensions, comparisons, and applications of superimposition methods for morphometric analysis. Ph. D. dissertation. State University of New York at Stony Brook.

    Google Scholar 

  • Slice, D. E. 1994. GRF-ND: Generalized rotational fitting of N-dimensional data. Department of Ecology and Evolution. State University of New York at Stony Brook, Stony Brook, New York 11794.

    Google Scholar 

  • Sneath, P. H. A. 1967. Trend-surface analysis of transformation grids. Journal of Zoology 151: 65–122.

    Article  Google Scholar 

  • Walker, J. A. 1994. Morphometrika. Geometric morphometrics for the Macintosh. Department of Anatomical Sciences. State University of New York at Stony Brook, Stony Brook, New York, 11794.

    Google Scholar 

  • Zangerl, R. 1969. The turtle shell. Pages 311–339 in C. A. Gans, A. d’A. Bellairs, and T. S. Parsons (eds.), Biology of the Reptilia. Volume 1. Academic Press: New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Slice, D.E. (1996). Three-Dimensional Generalized Resistant Fitting and the Comparison of Least-Squares and Resistant-Fit Residuals. In: Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P., Slice, D.E. (eds) Advances in Morphometrics. NATO ASI Series, vol 284. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9083-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9083-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9085-6

  • Online ISBN: 978-1-4757-9083-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics