Nucleotide Sequences in Nematode Systematics

  • Thomas O. Powers
  • Byron J. Adams
Part of the NATO ASI Series book series (NSSA, volume 268)


The addition of nucleotide sequence data to systematics has dramatically altered the study of relationships among organisms. In some respects, it has merely intensified the debate involving congruence between morphological and nonmorphological data sets (Patterson et al., 1993; Swofford, 1991; Hillis, 1987). In other regards, it has shifted the focus of the debate to methods of handling large data sets comprised of nonmorphological characters (Felsenstein, 1988; Hillis and Huelsenbeck, 1992; Simon, 1991; Swofford and Olsen, 1990). Nucleotide sequence alignment, assessments of homology, tree building protocols, and tree optimization and evaluation procedures are all recognized as critical components in contemporary systematic analysis. It is indisputable that molecular methods will have an impact in nematode systematics. Already there is a rapidly accumulating literature in molecular systematics, albeit some of it rather obtuse and difficult to interpret. Some fields, such as mammalian systematics, have vigorously embraced the new technologies. Nematode molecular systematics is in its infancy, with less than a dozen technical papers using nucleotide sequence data to assess relationships among nematodes. Yet it could be argued that molecular systematics will have its greatest impact among the lesser understood taxa, those that have received scant attention due to small size of the organisms and conservation of morphological characters. Molecular systematics can put nematodes on the same footing as better understood organisms.


Major Histocompatibility Complex Mitochondrial Genome Phylogenetic Inference Plant Parasitic Nematode Nucleotide Sequence Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avice, J.C., 1994, Molecular Markers, Natural History, and Evolution, Chapman and Hall, New York.CrossRefGoogle Scholar
  2. Avise, J.C., Helfman, G.S., Saunders, N.C., and Hales, L.S., 1986, Mitochondrial DNA differentiation in North Atlantic eels: Population genetic consequences of an unusual life history pattern, Proc. Natl. Acad. Sci. USA 83:4350.PubMedCrossRefGoogle Scholar
  3. Ball, R.M. Jr., Freeman, S., James, F.C., Bermingham, E., and Avise, J.C., 1988, Phylogeographic population structure of Red-winged Blackbirds assessed by mitochondrial DNA, Proc. Natl. Acad. Sci. USA 85:1558.PubMedCrossRefGoogle Scholar
  4. Beckenbach, K., Smith, M.J., and Webster, J.M., 1992, Taxonomic affinities and intra- and interspecific variation in Bursaphelenchus spp. as determined by polymerase chain reaction, J. Nematol. 24:140.PubMedGoogle Scholar
  5. Brooks, D.R., and McLennan, D.A. 1991, Phylogeny, Ecology and Behavior: A Research Program in Comparative Biology, University of Chicago Press, ChicagoGoogle Scholar
  6. Brower, A.V.Z., and Boyce, T.M., 1991, Mitochondrial DNA variation in monarch butterflies, Evolution 45:1281.CrossRefGoogle Scholar
  7. Brown, W.M., Prager, E.M., Wang, A., and Wilson, A.C., 1982, Mitochondrial DNA sequences of primates: Tempo and mode of evolution, J. Mol. Evol. 18:225.PubMedCrossRefGoogle Scholar
  8. Butler, M.H., Wall, S.M., Luehrsen, K.R., Fox, G.E., and Hecht, R.M., 1981, Molecular relationships between closely related strains and species of nematodes, J. Mol. Evol. 18:18.PubMedCrossRefGoogle Scholar
  9. Castagnone-Sereno, P., Potte, C., Uijthof, J., Abad, P., Wajnberg, E., Vanlerberghe-Masutti, F., Bongiovanni, M., and Dalmasso, A., 1993, Phylogenetic relationships between amphimictic and Parthenogenetic nematodes of the genus Meloidogyne as inferred from repetitive DNA analysis, Heredity 70:195.CrossRefGoogle Scholar
  10. Doolittle, R.F., ed., 1990, Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences. Methods in Enzymology, Vol. 183, Academic Press, New York.Google Scholar
  11. Dutta, S.K., ed., 1986, DNA Systematics. CRC Press, Boca Raton.Google Scholar
  12. Felsenstein, J., 1988, Phylogenies from molecular sequences: inferences and reliability, Annu. Rev. Genet. 22:521.PubMedCrossRefGoogle Scholar
  13. Ferris, V.R., Ferris, J.M., and Faghihi, J., 1993, Variation in spacer ribosomal DNA in some cyst-forming species of plant parasitic nematodes, Fundam. Appl. Nematol. 16:177.Google Scholar
  14. Fernholm, B., Bremer, K., and Jornvall, H., eds., 1989, The Hierarchy of Life. Molecules and Morphology in Phylogenetic Analysis, Elsevier, Amsterdam.Google Scholar
  15. Gillespie, J., 1991, The Causes of Molecular Evolution, Oxford University Press, Oxford.Google Scholar
  16. Harris, T.S., Sandall, L.J., and Powers, T.O., 1990, Identification of single Meloidogyne juveniles by polymerase chain reaction amplification of mitochondrial DNA, J. Nematol. 22:518.PubMedGoogle Scholar
  17. Harrison, R.G., 1991, Molecular changes at speciation, Annu. Rev. Ecol. Syst. 22:281.CrossRefGoogle Scholar
  18. Harvey, P.H., and Pagel, M.D., 1991, The Comparative Method in Evolutionary Biology, Oxford University Press, Oxford.Google Scholar
  19. Hillis, D.M., 1987, Molecules versus morphological approaches to systematics, Annu. Rev. Ecol. Syst. 18:23.CrossRefGoogle Scholar
  20. Hillis, D.M., and Huelsenbock, J.P., 1992, Signal, noise, and reliability in molecular phylogenetic analyses, J. Hered. 83:189.PubMedGoogle Scholar
  21. Hillis, D.M., and Moritz, C., eds., 1990, Molecular Systematics. Sinauer Associates, Sunderland.Google Scholar
  22. Hugall, A., Moritz, C., Stanton, J., and Wolstenholme, D.R., 1994, Low, but strongly structured mitochondrial DNA diversity in root knot nematodes (Meloidogyne), Genetics (in press).Google Scholar
  23. Kimura, M., 1980, A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol. 16:111.PubMedCrossRefGoogle Scholar
  24. Klein, J., Takahata, N., and Ayala, F.J., 1993, MHC polymorphism and human origins, Scientific American Dec. 78.Google Scholar
  25. Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Paabo, S., Villabianca, F.X., and Wilson, A.C., 1989, Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers, Proc. Natl. Acad. Sci. USA 86:6196.PubMedCrossRefGoogle Scholar
  26. Mindell, D.P., 1991, Aligning DNA sequences: Homology and phylogenetic weighing, in: “Phylogenetic Analysis of DNA Sequences”, Miyamoto, M.M. and Cracraft, J., eds., Oxford University Press, New York.Google Scholar
  27. Mindell, D.P. and Honeycutt, R.L. 1990, Ribosomal RNA in vertebrates: Evolution and phylogenetic applications, Annu. Rev. Ecol. Syst. 21:541.CrossRefGoogle Scholar
  28. Miyamoto, M.M., and Cracraft, J., eds., 1991, Phylogenetic Analysis of DNA Sequence. Oxford University Press, New York.Google Scholar
  29. Nei, M., 1987, Molecular Evolutionary Genetics, Columbia University Press, New York.Google Scholar
  30. Novitski, C.E., Brown, S., Chen, R., Corner, A.S., Atkinson, H.S., and McPherson, M.J., 1993, Major Sperm Protein Genes from Globodera rostochiensis, J. Nematol. 25:548.Google Scholar
  31. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., and Erlich, H., 1986, Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor, Symp. Quant. Biol. 51:263.CrossRefGoogle Scholar
  32. Okimoto, R., Macfarlane, J.L., Clary, D.O., and Wolstenholme, D.R., 1992, The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum, Genetics 130:471.Google Scholar
  33. Palumbi, S.R., and Wilson, A.C., 1990, Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and S. droebachiensis, Evolution 44:403.CrossRefGoogle Scholar
  34. Pamilo, P., and Nei, M., 1988, Relationships between gene trees and species trees, Mol. Biol. Evol. 5:568.PubMedGoogle Scholar
  35. Patterson, C., ed., 1987, Molecules and Morphology in Evolution: Conflict or Compromise?, Cambridge University Press, Cambridge.Google Scholar
  36. Patterson, C., Williams, D.M., and Humphries, C.J., 1993, Congruence between molecular and morphological phylogenies, Annu. Rev. Ecol. Syst. 24:153.CrossRefGoogle Scholar
  37. Powers, T.O., and Harris, T.S., 1993, A polymerase chain reaction method for identification of five major Meloidogyne species, J. Nematol. 25:1PubMedGoogle Scholar
  38. Powers, T.O., Harris, T.S., and Hyman, B.C., 1993, Mitochondrial DNA divergence among Meloidogyne incognita, Romanomermis culicivorax, Ascaris suum, and Caenorhabditis elegans, J. Nematol. 25:563.Google Scholar
  39. Quicke, D.L.J., 1993, Principles and Techniques of Contemporary Taxonomy, Blackie Academic and Professional, London.CrossRefGoogle Scholar
  40. Radice, A.D., Powers, T.O., Sandall, L.J., and Riggs, R.D., 1988, Comparisons of mitochondrial DNA from the sibling species Heterodera glycines and H. schachtii, J. Nematol. 20:443.Google Scholar
  41. Selander, R.K., Clark, A.G., and Whittam, T.S., 1991, Evolution at the Molecular Level, Sinauer Associates, Sunderland.Google Scholar
  42. Simon, C., 1991, Molecular systematics at the species boundary: Exploiting conserved and variable regions of the mitochondrial genome of animals via direct sequencing from amplified DNA, in: “Molecular Techniques in Taxonomy”, Hewitt, G.M., Johnson, A.W.B., and Young, J.P.W., eds., Springer-Verlag, Berlin.Google Scholar
  43. Soltis, P., Soltis, D., and Doyle, J.J., eds., 1992, Molecular Systematics of Plants, Chapman and Hall, New York.Google Scholar
  44. Swofford, D.L., 1991, When are phytogeny estimates from molecular and morhological data incongruent?, in: “Phylogenetic Analysis of DNA Sequences”, Miyamoto, M.M. and Cracraft, J., eds., Oxford Univ. Press, New York.Google Scholar
  45. Swofford, D.L., and Olsen, G.L., 1990, Phylogeny reconstruction, in: Molecular Systematics, D.M. Hillis and C. Moritz, eds., Sinauer, Sunderland, Mass.Google Scholar
  46. Tajima, F., and Nei, M., 1984, Estimation of evolutionary distance between nucleotide sequences, Mol. Biol. Evol. 1:269.PubMedGoogle Scholar
  47. Tamura, K., and Nei, M., 1993, Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol. Biol. Evol. 10:512.PubMedGoogle Scholar
  48. Thomas, W.K. and Wilson, A.C., 1991, Mode and tempo of molecular evolution in the nematode Caenorhabditis: cytochrome oxidase II and calmodulin sequences, Genetics 128:269.PubMedGoogle Scholar
  49. Vahidi, H., Curran, J., Nelson, D.W., Webster, J.M., McClure, M.A., and Honda, B.M., 1988, Unusual sequences, homologous to 5 S RNA, in ribosomal DNA repeats of the nematode Meloidogyne arenaria, J. Mol. Evol. 27:222.CrossRefGoogle Scholar
  50. Vahidi, H., and Honda, B.M., 1991, Repeats and subrepeats in the intergenic spacer of rDNA from the nematode Meloidogyne arenaria, Mol. Gen. Genet. 227:334.Google Scholar
  51. Vahidi, H., Purac, A., LeBlanc, J.M., and Honda, B.M., 1991, Characterization of potentially functional 5 S rRNA-encoding genes within ribosomal DNA repeats of the nematode Meloidogyne arenaria, Gene 108: 281.CrossRefGoogle Scholar
  52. Vrain, T.C., Wakarchuk, D.A., Levesque, A.C., and Hamilton, R.I., 1992, Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group, Fundam. appl. Nematol. 15:563.Google Scholar
  53. Waterman, M.S., Joyce, J., and Eggert, M., 1991, Computer alignment of sequences, in: “Phylogenetic Analysis of DNA Sequences”, Miyamoto, M.M. and Cracraft, J., eds., Oxford University Press, New York.Google Scholar
  54. Wilson, A.C., Ochman, H., and Prager, E.M., 1987, Molecular time scale for evolution, Trends Genet. 3:241.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Thomas O. Powers
    • 1
  • Byron J. Adams
    • 1
  1. 1.Department of Plant PathologyUniversity of NebraskaLincolnUSA

Personalised recommendations