Transposable Elements in Nematodes

  • Pierre Abad
Part of the NATO ASI Series book series (NSSA, volume 268)


Transposable elements are present in the genomes of most, if not all, organisms. Because of their ability to insert into and excise from the chromosomes of their hosts transposons are a significant source of spontaneous mutations in organisms. Therefore they can be used as a tool for cloning genes that have been identified by mutations and for which no gene products are known. Transposable elements may be divided into two classes according to their mechanisms of transposition. Class I elements transpose by reverse transcription of an RNA intermediate (a DNA-RNA-DNA mechanism), while class II elements transpose directly from DNA to DNA (Fig. 1).


Transposable Element Caenorhabditis Elegans Inverted Repeat Mutator Activity Ascaris Lumbricoides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abad, P., Cerutti, M., and Devauchelle, G., 1991a, DNA binding activity of the putative transposase of Tcl element (TcA) overexpressed in baculovirus system, 8th International C. elegans Meeting, Madison, WI, USA.Google Scholar
  2. Abad, P., Cerutti, M., Pauron, D., Quiles, C., Palin, B., Devauchelle, G., and Dalmasso, A., 1993, Expression and biochemical characterization of the DNA binding activity of TcA, the putative transposase of Caenorhabditis elegans transposable element Tcl, Biochem. and Biophy. Res. Comm. 192: 1445.CrossRefGoogle Scholar
  3. Abad, P., Quilès, C., Tarès, S., Piotte, C., Castagnone-Sereno, P., Abadon, M., and Dalmasso, A., 1991b, Sequences homologous to Tc(s) transposable elements of Caenorhabditis elegans are widely distribued in the phylum of nematoda, J. Mol. Evol. 33: 251.PubMedCrossRefGoogle Scholar
  4. Abad, P., Vaury, C., Pélisson, A., Chaboissier, M.C., Busseau, I., and Bucheton, A., 1989, A long interspersed repetitive element — the I factor of Drosophila teissieri — is able to transpose in different Drosophila species, Proc. Natl. Acad. Sci. USA 86: 8887.PubMedCrossRefGoogle Scholar
  5. Aeby, P., Spicher, A., De Chastonay, Y., Muller, F., and Tobler, H., 1986, Structure and genomic organization of proretrovirus-like elements partially eliminated from the somatic genome of Ascaris lumbricoides, EMBO J. 5: 3353.PubMedGoogle Scholar
  6. Anderson, P., Emmons, S.W., and Moerman, D.G., 1992, Discovery of Tcl in the nematode genome Caenorhabditis elegans, in: “The dynamic genome,” N. Federoff, ed., Cold Spring Harbor Laboratory Press, New York.Google Scholar
  7. Benian, G.M., Kiff, J.E., Neckelmann, N., Moerman, D.G., and Waterston, R.H., 1989, Sequence of an unusually large protein implicated in regulation of myosin activity in C. elegans, Nature 342:45.PubMedCrossRefGoogle Scholar
  8. Berg, D.E., Lodge, J., Sasakawa, C., Nag, D.K., Phadnis, S.H., Weston-Hafer, K., and Carle, G.F., 1984, Transposon Tn5: specific sequence recognition and conservative transposition, Cold Spring Harbor Symp. Quant. Biol. 49: 215.PubMedCrossRefGoogle Scholar
  9. Bingham, P.M., Kidwell, M.G., and Rubin, G.M., 1982, The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P strain-specific transposon family, Cell 29: 995.PubMedCrossRefGoogle Scholar
  10. Blackman, R.K., and Gelbart, W.M., 1989, The transposable element hobo of Drosophila melanogaster, in “Mobile DNA,” D.E. Berg and M.M. Howe, eds., American Society for Microbiology, Washington DC.Google Scholar
  11. Bonas, U., Sommer, H., and Saedler, H., 1984, The 17kb Taml element of Antirrhinum majus induces a 3bp duplication upon integration into the chalcone synthase gene, EMBO 7, 3: 1015.Google Scholar
  12. Bregliano, J.C., and Kidwell, M.G., 1983, Hybrid dysgenesis determinants, in “Mobile genetic elements,” J. Shapiro, ed., Academic Press, New-York.Google Scholar
  13. Brezinsky, L., Wang, G.V.L., Humphreys, T., and Hunt, J., 1990, The transposable element Uhu from Hawaïan Drosophila member of the widely dispersed class of Tcl-like transposons, Nucleic Acids Res. 18: 2053.PubMedCrossRefGoogle Scholar
  14. Bucheton, A., Paro, R., Sang, H.M., Pelisson, A., and Finnegan, DJ., 1984, The molecular basis of I-R hybrid dysgenesis in Drosophila melanogaster: Identification, cloning and properties of I factor, Cell. 338: 153.CrossRefGoogle Scholar
  15. Bustos, M.M., Luckow, V.A., Griffing, L.R., Summers, M.D., and Hall, T.C., 1988, Expression glycosylation and secretion of phaseolin in a baculovirus system, Plant Mol. Biol. 10: 475.CrossRefGoogle Scholar
  16. Coen, E.S., Carpenter, R., and Martin, C., 1986, Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus, Cell. 47: 285.PubMedCrossRefGoogle Scholar
  17. Coen, E.S., Robbins, T.P., Almeida, J., Hudson, A., and Carpenter, R., 1989, Consequences and mechanisms of transposition in Antirrhinum majus, in “Mobile DNA,” D.E. Berg and M.H. Howe, eds., American Society for Microbiology, Washington DC.Google Scholar
  18. Collins, J., Forbes, E., and Anderson, P., 1989, The Tc3 family of transposable genetic elements in Caenorhabditis elegans, Genetics 120:621.Google Scholar
  19. Collins, J., Saari, B., and Anderson, P., 1987, Activation of a transposable element in the germ line but not the soma of Caenorhabditis elegans, Nature 328: 726.PubMedCrossRefGoogle Scholar
  20. Copeland, N.G., Jenkins, N.A., and Lee, B.K., 1983, Association of the lethal yellow (Ay) coat color mutation with an ecotropic murine leukemia virus genome, Proc. Natl. Acad. Sci. USA 80: 247.PubMedCrossRefGoogle Scholar
  21. Doerfler, W., 1986, Expression of the Autographa californica nuclear polyhedrosis virus genome in insect cells: Homologous viral and heterologous vertebrate genes — The baculovirus system, Curr. Top. Microbiol. Immunol. 131: 51.PubMedCrossRefGoogle Scholar
  22. Doring, H.P., and Starlinger, P., 1984, Barbara Mc-Clintock’s controlling elements: Now at the DNA level, Cell 39: 253.PubMedCrossRefGoogle Scholar
  23. Doring, H.P., and Starlinger, P., 1986, Molecular genetics of transposable elements in plant, Annu. Rev. Genet. 20: 175.PubMedCrossRefGoogle Scholar
  24. Eide, D., and Anderson P., 1985a, Transposition of Tcl in the nematode C. elegans, Proc. Natl. Acad. Sci. USA 82: 1756.PubMedCrossRefGoogle Scholar
  25. Eide, D., and Anderson P., 1985b, The gene structures of spontaneous mutations affecting a Caenorhabditis elegans myosin heavy chain gene, Genetics 109: 67.PubMedGoogle Scholar
  26. Eide, D., and Anderson, P., 1988, Insertion and excision of the Caenorhabditis elegans transposable element Tel, Mol.Cell.Biol. 8: 737.PubMedGoogle Scholar
  27. Emmons, S.W., Klass, M.R., and Hirsh, D., 1979, Analysis of the constancy of DNA sequences during the development and evolution of the nematode Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA 76: 1333.PubMedCrossRefGoogle Scholar
  28. Emmons, S. W., Roberts, S., and Ruan, K.S., 1986, Evidence in a nematode for regulation of transposon excision by tissue-specific factors, Mol. Gen. Genet. 202: 410.PubMedCrossRefGoogle Scholar
  29. Emmons, S. W., Ruan, K.S., Levitt, A., and Yesner, L., 1985, Regulation of Tcl transposable elements in Caenorhabditis elegans, Cold Spring Harbor Symp. Quant. Biol. 50: 313.PubMedCrossRefGoogle Scholar
  30. Emmons, S.W., and Yesner, L., 1984, High-frequency excision of transposable element Tcl in the nematode Caenorhabditis elegans is limited to somatic cells, Cell 36: 599.PubMedCrossRefGoogle Scholar
  31. Emmons, S.W., Yesner, L., Ruan, K.S., and Katzenberg, D., 1983, Evidence for a transposon in Caenorhabditis elegans, Cell 32: 55.PubMedCrossRefGoogle Scholar
  32. Engels, W.R., 1983, The P Family of transposable elements in Drosophila, Annu. Rev. Genet. 17: 315.PubMedCrossRefGoogle Scholar
  33. Engels, W.R., 1989, P elements in Drosophila melanogaster, in “Mobile DNA,” D.E. Berg and M.H. Howe, eds., American Society for Microbiology, Washington DC.Google Scholar
  34. Engels, W.R., Johnson-Schlitz, D.M., Eggleston, W.B., and Sved, J., 1990, High-frequency P lossin Drosophila is homolog dependent, Cell 62: 515.PubMedCrossRefGoogle Scholar
  35. Fawcett, D.H., Lister, C.K., Kellett, E., and Finnegan, DJ., 1986, Transposable elements controlling I-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs, Cell 47: 1007.PubMedCrossRefGoogle Scholar
  36. Fedoroff, N., 1983, Controlling elements in maize, in “Mobile Genetic Elements,” J.A. Shapiro, ed., Academic Press, Inc., N.Y.Google Scholar
  37. Fedoroff, N., Wessler, S., and Shure, M., 1983, Isolation of the transposable maize controlling element Ac and Ds, Cell 35:243.CrossRefGoogle Scholar
  38. Finnegan, DJ., 1989, Eukaryotic transposable elements and genome evolution, Trends Genet. 5: 103.PubMedCrossRefGoogle Scholar
  39. Freund, R., and Meselson, M., 1984, Long terminal repeat nucleotide sequence and specific insertion of the gypsy transposon, Proc. Natl. Acad. Sci. USA 81: 4462.PubMedCrossRefGoogle Scholar
  40. Greenblat, I.M., and Brink, R.A., 1962, Twin mutations in medium variegated pericarp maize, Genetics 47: 489.Google Scholar
  41. Greenwald, I., 1985, Lin-12, a nematode homeotic gene, is homologous to a set of mammalian proteins that includes growth factor, Cell 43: 583.PubMedCrossRefGoogle Scholar
  42. Grindley, N. D. F., 1978, IS1 insertion generates duplication of a nine base pair sequence at its target site, Cell 13:419.PubMedCrossRefGoogle Scholar
  43. Hailing, S., and Kleckner, N., 1982, A symmetrical six-base-pair target site sequence determines TnlO insertion specificity, Cell. 28: 155.CrossRefGoogle Scholar
  44. Harris, L.J., Baillie, D.L. and Rose, A.M., 1988, Sequence identity between an inverted repeat family of transposable elements in Drosophila and Caenorhabditis, Nucleic Acids Res. 16: 5991.PubMedCrossRefGoogle Scholar
  45. Harris, L.J., and Rose, A.M., 1989, Structural analysis of Tcl in Caenornabditis elegans var. Bristol (strainN2), Plasmid 22: 10.PubMedCrossRefGoogle Scholar
  46. Heierhorst, J., Lederis, K., and Richter, D., 1992, Presence of a member of the Tcl-like transposon family from nematodes and Drosophila within the vasotocin gene of a primitive vertebrate, the pacific hagfish Eptatretus stouti, Proc. Natl. Acad. Sci. USA 89: 6798.PubMedCrossRefGoogle Scholar
  47. Herman, R., and Shaw, J., 1987, The transposable genetic element Tcl in the nematode Caenorhabditis elegans, Trends Genet. 3:222.CrossRefGoogle Scholar
  48. Ikenaga, H., and Saigo, K., 1982, Insertion of a movable genetic element, 297, into the TATA box for the H3 histone gene of Drosophila melanogster, Proc. Natl. Acad. Sci. USA 79:4143.PubMedCrossRefGoogle Scholar
  49. Inouye, S., Yuki, S., and Saigo, K., 1984, Sequence-specific insertion of the Drosophila transposable genetic element 17.6, Nature 310: 32.CrossRefGoogle Scholar
  50. Kaufman, P.D., Doll, R.F., and Rio, D.C., 1989, Drosophila P element transposase recognizes internal P element DNA sequences, Cell. 59: 359.PubMedCrossRefGoogle Scholar
  51. Kiff, J.E., Moerman, D.G., Schriefer, L.A., and Waterston, R.H., 1988, Transposon-induced deletions in unc-22 of Caenorhabditis elegans associated with almost normal gene activity, Nature 331:631.PubMedCrossRefGoogle Scholar
  52. Levitt, A., and Emmons, S.W., 1989, The Tc2 transposon in Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA 86: 3232.PubMedCrossRefGoogle Scholar
  53. Li, W., and Shaw, J.E., 1993, A variant Tc4 transposable element in the nematode C. elegans could encode a novel protein, Nucleic Acids Res., 21, 59.PubMedCrossRefGoogle Scholar
  54. Liao, L.W., Rosenzweig B., and Hirsh, D., 1983, Analysis of a transposable element from Panagrellus redevivus, Proc. Natl. Acad. Sci. U.SA 84: 5325.Google Scholar
  55. Link, C., Graft-Witsel, J., and Wood, W.B., 1987, Isolation and characterization of a nematode transposable element from Panagrellus redivivus, Proc. Natl. Acad. Sci. U.S.A. 84: 5325.PubMedCrossRefGoogle Scholar
  56. Luckow, V.A., and Summers, M.D., 1988, Trends in the development of baculovirus expression vectors, BioTechnology 6: 47.CrossRefGoogle Scholar
  57. Masson, P., Surosky, R., Kingsbury, J., and Fedoroff, N.V., 1987, Genetic and molecular analysis of the Spm dependent a-m2 alleles of the maize a locus, Genetics 177: 117.Google Scholar
  58. Medhora, M.M., MacPeek, A.H., and Haiti, D.L., 1988, Excision of the Drosophila transposable element mariner: identification and characterization of the Mos factor, EMBO J. 7: 2185.PubMedGoogle Scholar
  59. Moerman, D.G., and Baillie, D.L., 1979, Genetic organization in Caenorhabditis elegans: fine structure analysis of the unc-22 gene, Genetics 91:95.PubMedGoogle Scholar
  60. Moerman, D.G., Beninan, G.M., Barstead, R.J., Schiefer, L., and Waterston, R.H., 1988, Identification and intracellular localization of the unc-22 gene product of Caenorhabditis elegans, Genes Dev. 2: 93.PubMedCrossRefGoogle Scholar
  61. Moerman, D.G., Beninan, G.M., and Waterston, R.H., 1986, Molecular cloning of the muscle gene unc-22 in Caenorhabditis elegans by Tcl transposon tagging, Proc. Natl. Acad. Sci. USA 83: 2579.PubMedCrossRefGoogle Scholar
  62. Moerman, D.G., and Waterston, R.H., 1984, Spontaneous unstable unc-22 IV mutations in C. elegans var. Bergerac, Genetics 108: 859.PubMedGoogle Scholar
  63. Moerman, D.G., and Waterston, R.H., 1989, Mobile elements in Caenorhabditis elegans and other nematodes, in “Mobile DNA,” D.E. Berg and M.H. Howe, eds., American Society for Microbiology, Washington DC.Google Scholar
  64. Mori, I., Benian, G.M., Moerman, D.G., and Waterston, R.H., 1988a, The transposon Tcl of C. elegans recognizes specific target sequences for integration, Proc. Natl. Acad. Sci. USA 85: 861PubMedCrossRefGoogle Scholar
  65. Mori, I., Moerman, D.G., and Waterston, R.H., 1988b, Analysis of a mutator activity necessary for germline transposition and excision of Tcl transposable elements in Caenorhabditis elegans, Genetics 120: 397.PubMedGoogle Scholar
  66. Mori, I., Moerman, D.G., and Waterston, R.H., 1990, Interstrain crosses enhance excision of Tcl transposable elements in Caenorhabditis elegans, Mol. Gen. Genet. 220: 251.PubMedCrossRefGoogle Scholar
  67. O’Hare, K., and Rubin, G.M., 1983, Structure of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome, Cell 34: 25.PubMedCrossRefGoogle Scholar
  68. Plasterk, R.H.A., 1987, Differences between Tcl elements from the C. elegans strain Bergerac, Nucleic Acids Res. 15: 10050.PubMedCrossRefGoogle Scholar
  69. Plasterk, R.H.A., 1991, The origin of footprints of the Tcl transposon of Caenorhabditis elegans, EMBO J., 10: 1919.PubMedGoogle Scholar
  70. Plasterk, R.H.A., and Groenen, J.T.M., 1992, Targeted alterations of the Caenorhabditis elegans genome by transgene instructed DNA double strand break repair following Tcl excision, EMBO J. 11: 287.PubMedGoogle Scholar
  71. Prasad, S.S., Harris, L.J., Baillie, D.L., and Rose, A.M., 1991, Evolutionary conserved regions in Caenorhabditis transposable elements deduced by sequence comparison, Genome 34: 6.PubMedCrossRefGoogle Scholar
  72. Roeder, G.S. and Fink, G.R., 1983, Transposable elements in yeast, in “Mobile Genetic Elements” J.A. Shapiro, ed., Academic Press, Inc. New-York.Google Scholar
  73. Rose, A.M., Harris, LJ., Mawji, N.R., and Morris, W.R., 1985, Tcl (Hin): a form of the transposable element Tcl in Caenorhabditis elegans, Can. J. Biochem. Cell. Biol. 63: 752.PubMedCrossRefGoogle Scholar
  74. Rose, A.M., and Snutch, T.P., 1984, Isolation of the closed circular form of the transposable element Tcl of Caenorhabditis elegansNature 311: 485.PubMedCrossRefGoogle Scholar
  75. Rosenzweig, B., Liao, L., and Hirsh, D., 1983, Sequence of the C. elegans transposable element Tcl, Nucleic Acids Res. 11:4201.PubMedCrossRefGoogle Scholar
  76. Ruan, K.S., and Emmons, S.W., 1984, Extrachromosomal copies of transposon Tcl in the nematode Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA 81: 4018.PubMedCrossRefGoogle Scholar
  77. Rubin, G.M., Kidwell, M.G. and Bingham, P.M., 1981, The molecular basis of P-M hybrid dysgenesis: The nature of induced mutations, Cell 29: 987.CrossRefGoogle Scholar
  78. Ruvkun G., Ambros, V., Coulson, A., Waterston, R., Sulston, J., and Horvitz, H.R., 1989, Molecular genetics of the Caenorhabditis elegans heterochrony gene lin-14, Genetics 121: 501.PubMedGoogle Scholar
  79. Ruvolo, V., Hill, J.E., and Levitt, A., 1992, The Tc2 Transposon of Caenorhabditis elegans has the structure of a self-regulated element, DNA and Cell. Biol. 11: 111.CrossRefGoogle Scholar
  80. Schukkink, R.F., and Plasterk, R.H.A., 1990, TcA, the putative transposase of the C. elegans Tcl transposon, has an N-terminal DNA binding domain, Nucleic Acids Res. 18: 895.PubMedCrossRefGoogle Scholar
  81. Schwartz-Sommer, Z., Gierl, A., Cuypers, H., Peterson, P.A., and Saedler, H., 1985, Plant transposable elements generate the DNA sequence diversity needed in evolution, EMBO J. 4: 591.Google Scholar
  82. Searles, L., Greenleaf, A., Kemp, W., and Voelker, R., 1986, Sites of P element insertion and structures of P element deletions in the 5’ region of Drosophila melanogaster RpII215, Mol. Cell. Biol. 6: 3312.PubMedGoogle Scholar
  83. Sedensky, M., Hudson, S., Everson, B., and Morgan, P., 1993, Mariners grand finale, 9th International C. elegans Meeting, Madison, WI, USA.Google Scholar
  84. Shure, M., Wessler, S., and Fedoroff, N., 1983, Molecular identification and isolation of the Waxy locus in maize, Cell 35: 235.PubMedCrossRefGoogle Scholar
  85. Streck, R.D., MacGaffey, J.E. and Beckendorf, S.K., 1986, The structure of hobo transposable elements and their insertion sites, EMBO J. 5: 3615.PubMedGoogle Scholar
  86. Sulston, J., Ainscough, R., Berks, M., Coulson, A., Craxton, M., Dear, S., Du, Z., Durbin, R.K., Gleeson, T., Green, P., Halloran, N., Hawkins, T., Hillier, L., Metzstein, M., Qiu, L., Staden, R., Thierry-Mieg, J., Thomas, K., Wilson, R., and Waterston, R., 1992, The C. elegans sequencing project: A begining, Nature 356:37.PubMedCrossRefGoogle Scholar
  87. Sutton, W., Gerlach, W., Schwartz, D., and Peacok, W., 1984, Molecular analysis of Ds controlling element mutations at the Ash1 locus of maize, Science 223: 1265.PubMedCrossRefGoogle Scholar
  88. Tsubota, S., and Schedl, P., 1986, Hybrid dysgenesis-induced revertans of insertions at that 5’ end of the rudimentary gene in Drosophila melanogaster: transposon-induced control mutations, Genetics 114: 165.PubMedGoogle Scholar
  89. Van Luenen, H.G.A.M., Colloms, S.D., and Plasterk, R.H.A., 1993, Mobilization of quiet, endogenous Tc3 transposons of Caenorhabditis elegans by forced expression of Tc3 transposase, EMBO J. 12: 2513.PubMedGoogle Scholar
  90. Vos, J.C., Van Luenen, H.G.A.M., and Plasterk, R.H.A., 1993, Characterization of Caenorhabditis elegans Tcl transposon in vivo and in vitro, Genes Dev. 7: 1244.PubMedCrossRefGoogle Scholar
  91. Waterson, R.H., Moerman, D.G., Benian, G.M., Barstead, R.J., Mori I., and Francis, R., 1986, Muscle genes and proteins in Caenorhabditis elegans, Mol. Cell. Biol. 29: 605.Google Scholar
  92. Xiong, Y., and Eickbush, T.H., 1990, Origin and evolution of retroelements based upon their reverse transcriptase sequences, EMBO J. 9: 3353.PubMedGoogle Scholar
  93. Yuan, J., Finney, M., Tsung, N., and Horvitz, R., 1991, Tc4, a Caenorhabditis elegans transposable element with an unusual fold-back structure, Proc. Natl. Acad. Sci. USA 88: 3334.PubMedCrossRefGoogle Scholar
  94. Zerbib, D., Gamas, P., Chandler, M., Prentki, P., Bass, S., and Galas, D., 1985, Specificity of insertion of IS1, J. Mol. Biol., 185: 517.PubMedCrossRefGoogle Scholar
  95. Zwall, R.R., Broeks, A., Van Meurs, J., Groenen, J.T.M., and Plasterk, R.H.A., 1993, Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank, Proc. Natl. Acad. Sci. USA 90: 7431.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Pierre Abad
    • 1
  1. 1.Laboratoire de Biologie des InvertébrésI.N.R.A.Antibes CedexFrance

Personalised recommendations