Genetic Analysis in Caenorhabditis Elegans

  • Ann M. Rose
  • Mark L. Edgley
  • David L. Baillie
Part of the NATO ASI Series book series (NSSA, volume 268)

Abstract

In order to contribute to the understanding of the organization and function of genes in the genome of Caenorhabditis elegans, we have undertaken a genetic approach. This type of approach relies upon the availability of mutant strains. Although there are many specific applications, in general genetic deduction depends upon the removal of a single component, and subsequent inference from phenotypic alterations as to the function of that component. The biology of C. elegans makes it very amenable to genetic manipulation (Brenner, 1974; reviewed in Wood, 1988). This nematode is a self-fertilizing hermaphrodite. The genetic material is organized into five autosomes and a sex chromosome. Males, which are XO, arise at a frequency of approximately one in 1,000 individuals by X-chromosome nondisjunction (Hodgkin et al., 1979). The complete cell lineage is known (Sulston and Horvitz, 1977; Sulston et al., 1983), and the structure of the 302-cell nervous system has been determined by serial section electron microscopy (White et al., 1986). Mutant phenotypes can be readily generated and easily maintained both in laboratory cultures and in frozen suspension. The C. elegans genetic map compiled by Edgley and Riddle (1993) includes 982 genes, 225 deficiencies, and 74 chromosomal duplications. Virtually the entire genome has been cloned in cosmid and yeast artificial chromosome vectors, and these clones have been ordered with respect to one another on a physical map of the genome (Coulson et al., 1988).

Keywords

Transposable Element Caenorhabditis Elegans Mutant Phenotype Essential Gene Chromosome Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahnn, J. and Fire, A., 1993, A screen for genetic loci required for body-wall muscle development during embryogenesis in C. elegans, Genetics in press.Google Scholar
  2. Albertson, D.G. and Thomson, J.N., 1993, Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans, Chromosome Research 1:15.CrossRefGoogle Scholar
  3. Aroian, R.V., Koga, M, Mendel, J.E., Ohshima, Y. and Sternberg, P.W., 1990, The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily, Nature 348:693.PubMedCrossRefGoogle Scholar
  4. Baillie, D.L., Beckenbach, K.A. and Rose, A.M., 1985, Cloning within the unc-43 to unc-31 interval (LGIV) of the C. elegans genome by Tcl transposon tagging, Can. J. Genet. & Cytol. 27: 457.Google Scholar
  5. Barbazuk, W.B., Johnsen, R.C. and Baillie, D.L., 1994, Srl-Suppressors of Roller Lethal: the generation and genetic analysis of suppressors of lethal mutations in the Caenorhabditis elegans rol-3(V) gene, Genetics 136:in press.Google Scholar
  6. Barstead, R.J. and Waterston, R.H., 1991, Vinculin is essential for muscle function in the nematode, J. Cell Biol. 114:715.PubMedCrossRefGoogle Scholar
  7. Bucher, E.A. and Greenwald, I., 1991, A genetic mosaic screen of essential genes in C. elegans, Genetics 128:281.PubMedGoogle Scholar
  8. Brenner, S., 1974, The genetics of Caenorhabditis elegans, Genetics 77:71.PubMedGoogle Scholar
  9. Clark, D.V. and Baillie, D.L., 1992, Genetic analysis and complementation by germ-line transformation of lethal mutations in the unc-22 IV region of Caenorhabditis elegans, Mol. Gen. Genet. 232:97.PubMedCrossRefGoogle Scholar
  10. Clark, D.V., Rogalski, T.M., Donati, L.M. and Baillie, D.L., 1988, The unc-22(IV) region of Caenorhabditis elegans: Genetic analysis of lethal mutations, Genetics 119:345.PubMedGoogle Scholar
  11. Coulson, A., Waterston, R.H., Kiff, J., Sulston, J.E. and Kohara, Y., 1988, Genome linking with yeast artificial chromosomes, Nature 335:184.PubMedCrossRefGoogle Scholar
  12. Curran, J., Baillie, D.L. and Webster, J.M., 1985, Use of genomic DNA restriction fragment length differences to identify nematode species, Parasitology 90:137.CrossRefGoogle Scholar
  13. Edgley, M.L. and Riddle, D.L., 1993, The nematode Caenorhabditis elegans, in “Genetic Maps Locus maps of complex genomes,” S.J. O’Brien, ed, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  14. Emmons, S.W., Yesner, L., Ruan, K.-S. and Katzenberg, D., 1983 Evidence for a transposon in G elegans, Cell 32:55.PubMedCrossRefGoogle Scholar
  15. Fain, R.S., Baillie, D.L and Druehl, L.D, 1988, Repeat and single copy sequences are differentially conserved in the evolution of kelp chloroplast, J. Phycol. 24:292.Google Scholar
  16. Fire, A., 1986 DNA transformation in G elegans, EMBO Journal 5:2673.PubMedGoogle Scholar
  17. Greenwald, L, 1985, Lin-12, a nematode homeotic gene, is homologous to a set of mammalian proteins that includes epidermal growth factor, Cell 43:583.PubMedCrossRefGoogle Scholar
  18. Harris, L.J., Baillie, D.L. and Rose, A.M., 1988, Sequence identity between an inverted repeat family of transposable elements in Drosophila and Caenorhabditis, Nucleic Acid Res. 16:5991.PubMedCrossRefGoogle Scholar
  19. Henikoff, S. and Plasterk, R.H.A., 1988, Related transposons in G elegans and D. melanogaster, Nucleic Acid Res. 16:6234.PubMedCrossRefGoogle Scholar
  20. Herman, R.K., 1978, Crossover suppressors and balanced recessive lethals in G elegans, Genetics 88:49.PubMedGoogle Scholar
  21. Hodgkin, J. A., Horvitz, H.R. and Brenner, S., 1979, Nondisjunction mutants of the nematode G elegans, Genetics 91:67.PubMedGoogle Scholar
  22. Howell, A.M., Gilmour, S.G., Mancebo, R.A. and Rose, A.M., 1987, Genetic analysis of a large autosomal region in C. elegans by the use of a free duplication, Genetical Research 49:207.CrossRefGoogle Scholar
  23. Howell, A.M. and Rose, A.M., 1990, Essential genes in the hDf6 region of chromosome I in Caenorhabditis elegans, Genetics 126:583.PubMedGoogle Scholar
  24. Hill, R.J. and Sternberg, P.W., 1992, The gene lin-3 encodes an inductive signal for vulval development in G elegans, Nature 358:470.PubMedCrossRefGoogle Scholar
  25. Johnsen, R.C. and Baillie, D.L., 1988, Formaldehyde mutagenesis of the eTl balanced region in G elegans: Dose-response curve and the analysis of mutational events, Mutation Research 201:137.PubMedCrossRefGoogle Scholar
  26. Johnsen, R.C. and Baillie, D.L. 1991, Genetic analysis of a major segment [LGV(left)] of the genome of Caenorhabditis elegans, Genetics 129:735.PubMedGoogle Scholar
  27. McCombie, W.R., Adams, M.D, Kelley, J.M., Fitz-Gerald, M.G., Utterback, T.R., Khan, M., Dubnick, M., Kerlavage, A.R., Venter, J.C. and Fields, C., 1992, Caenorhabditis elegans expressed sequence tags identify gene families and potential disease gene homologues, Nature genetics 1:124.PubMedCrossRefGoogle Scholar
  28. McKim, K.S., Howell, A.M. and Rose, A.M., 1988, The effects of translocations on recombination frequency in Caenorhabditis elegans, Genetics 120:987.PubMedGoogle Scholar
  29. McKim, K.S. and Rose, A.M., 1990, Chromosome I duplications in Caenorhabditis elegans, Genetics 124:115.PubMedGoogle Scholar
  30. McKim, K.S., Starr, T. and Rose, A.M., 1992, Genetic and molecular analysis of the dpy-14 region in Caenorhabditis elegans, Mol. Gen. Genet. 233:241.PubMedCrossRefGoogle Scholar
  31. McKim, K.S., Matheson, C., Marra, M.A., Wakarchuk, M.F. and Baillie, D.L., 1993a, The G elegans unc- 60 gene encodes proteins homologous to a family of actin binding proteins, Mol. Gen. Genet. in press.Google Scholar
  32. McKim, K.S., Peters, K. and Rose, A.M., 1993b, Two types of sites required for chromosome pairing in Caenorhabditis elegans, Genetics 134:749.PubMedGoogle Scholar
  33. Mello, C.C., Kramer, J.M., Stinchcomb, D. and Ambros, V., 1991, Efficient gene transfer in G elegans: extrachromosomal maintenance and integration of transforming sequences, EMBO Journal 10:3959.PubMedGoogle Scholar
  34. Meneely, P.M. and Herman, R.K., 1979, Lethals, steriles and deficiencies in a region of the X chromosome of G elegans, Genetics 92:99.PubMedGoogle Scholar
  35. Messing, J., 1983, New M13 vectors for cloning, Methods Enzymol, 101:20.PubMedCrossRefGoogle Scholar
  36. Moerman, D.G., Benian, G.M. and Waterston, R.H., 1986, Molecular cloning of the muscle gene unc-22 in G elegans by Tcl transposon tagging, Proc. Natl. Acad. Sci USA 83:2579.PubMedCrossRefGoogle Scholar
  37. Pimpinelli, S. and Goday, C., 1989, Unusual kinetochores and chromatin diminution in Parascaris, TIGS 57:310.CrossRefGoogle Scholar
  38. Prasad, S., Harris, L.J., Baillie, D.L. and Rose, A.M., 1991, Evolutionarily conserved regions in Caenorhabditis transposable elements deduced by sequence comparison, Genome 34:6.PubMedCrossRefGoogle Scholar
  39. Rogalski, T.M., Moerman, D.G. and Baillie, D.L., 1982, Essential genes and deficiencies in the unc-22 IV region of G elegans, Genetics 102:725.PubMedGoogle Scholar
  40. Rogalski, T.M. and Baillie, D.L., 1985, Genetic organization of the unc-22 IV gene and the adjacent region in C. elegans, Mol. Gen. Genet 201:409.PubMedCrossRefGoogle Scholar
  41. Rose, A.M. and Baillie, D.L., 1980, Genetic organization of the region around unc-15(I), a gene affecting paramyosin in C elegans, Genetics 96:639.PubMedGoogle Scholar
  42. Rose, A.M., Baillie, D.L., Candido, E.P.M., Beckenbach, K.A. and Nelson, D., 1982, The linkage mapping of cloned restriction fragment length differences in Caenorhabditis elegans, Mol. Gen. Genet. 188:286.PubMedCrossRefGoogle Scholar
  43. Rose, A.M., Baillie, D.L. and Curran, J., 1984, Meiotic pairing behavior of two free duplications of linkage group I in C. elegans, Mol. Gen. Genet. 195:52.PubMedCrossRefGoogle Scholar
  44. Rosenbluth, R.E. and Baillie, D.L., 1981, The genetic analysis of a reciprocal translocation, eTJ(III;V), in C. elegans, Genetics 99:415.PubMedGoogle Scholar
  45. Rosenbluth, R.E., Cuddeford, C. and Baillie, D.L., 1983, Mutagenesis in Caenorhabditis elegans: I. A Rapid eukaryotic mutagen test system using the reciprocal translocation, eT1(III;V). Mutation Research 110:39.CrossRefGoogle Scholar
  46. Rosenbluth, E., Cuddeford, C. and Baillie, D.L., 1985, Mutagenesis in Caenorhabditis elegans. II. A spectrum of mutational events induced with 1500 R of gamma-radiation, Genetics 109:493.PubMedGoogle Scholar
  47. Rosenbluth, R.E., Rogalski, T.M., Johnsen, R.C., Addison, L.M. and Baillie, D.L., 1988, Genomic organization in Caenorhabditis elegans: deficiency mapping on linkage group V(left), Genetical Research 52:105.CrossRefGoogle Scholar
  48. Rosenbluth, R.E., Johnsen, R.C. and Baillie, D.L., 1990, Pairing for recombination in LG V of Caenorhabditis elegans: A model based on recombination in deficiency heterozygotes, Genetics 124:615.PubMedGoogle Scholar
  49. Sigurdson, D.C., Spanier, G.J. and Herman, R.K., 1984, C. elegans deficiency mapping, Genetics 108:331.PubMedGoogle Scholar
  50. Starr, T., Howell, A.M., McDowall, J., Peters, K. and Rose, A.M., 1989, Isolation and Mapping of DNA probes within the linkage group I gene cluster of Caenorhabditis elegans, Genome 32:365.PubMedCrossRefGoogle Scholar
  51. Stewart, H.I., Rosenbluth, R.E. and Baillie, D.L., 1991, Most ultraviolet irradiation induced mutations in the nematode Caenorhabditis elegans are chromosomal rearrangements, Mutation Research 249:37.PubMedCrossRefGoogle Scholar
  52. Sulston, J.E. and Horvitz, H.R., 1977, Post-embryonic cell lineages of the nematode Caenorhabditis elegans, Dev. Biol. 56:110.PubMedCrossRefGoogle Scholar
  53. Sulston, J.E., Schierenberg, E., White, J.G. and Thomson, J.N., 1983, The embryonic cell lineage of the nematode Caenorhabditis elegans, Dev. Biol. 100:64.PubMedCrossRefGoogle Scholar
  54. Sulston, J., Du, Z., Thomas, K., Wilson, R., Hillier, L., Staden, R., Halloran, N., Green, P., Thierry-Mieg, J., Qiu, L., Dear, S., Coulson, A., Craxton, M., Durbin, R., Berks, M., Metzstein, M., Hawkins, T., Ainscough, R. and Waterston, R., 1992, The C. elegans genome sequencing project: a beginning, Nature 356:37.PubMedCrossRefGoogle Scholar
  55. Waterston, R., Martin, C., Craxton, M., Huynh, C., Coulson, A., Hillier, L., Durbin, R., Green, P., Shownkeen, R., Halloran, N., Metzstein, M., Hawkins, T., Wilson, R., Berks, M., Du, Z., Thomas, K., Thierry-Mieg, J. and Sulston, J., 1992, A survey of expressed genes in Caenorhabditis elegans, Nature genetics 1:114.PubMedCrossRefGoogle Scholar
  56. Webster, J.M., Baillie, D.L., Beckenbach, K. and Rutherford, T.A., 1990, DNA probes for differentiating isolates of the pinewood nematode species complex, Revue Nématol 3:255.Google Scholar
  57. White, J.G., Southgate, E., Thomson, J.N. and Brenner, S., 1986, The structure of the nervous system of Caenorhabditis elegans, Philos. Trans. R. Soc. Lond. B Biol. Sci. 341:1.Google Scholar
  58. Wood, W.B., ed., 1988, “The nematode Caenorhabditis elegans,” Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.Google Scholar
  59. Zetka, M.-C. and Rose, A. M., 1992, The meiotic behavior of an inversion in Caenorhabditis elegans, Genetics 131:321.PubMedGoogle Scholar
  60. Zwaal, R.R., Broeks, A., van Meurs, J., Groenen, J.T.M. and Plasterk, R.H.A., 1993, Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank, Proc. Natl. Acad. Sci USA 90:7431.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Ann M. Rose
    • 1
  • Mark L. Edgley
    • 1
  • David L. Baillie
    • 2
  1. 1.Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
  2. 2.Institute of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyCanada

Personalised recommendations