Skip to main content

Mahoney Lake: A Case Study of the Ecological Significance of Phototrophic Sulfur Bacteria

  • Chapter

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 15))

Abstract

Phototrophic sulfur bacteria require light as an energy source and reduced inorganic sulfur compounds as electron-donating substrates for growth. Dense accumulations of these bacteria can develop where light reaches sulfide-containing layers of stratified water bodies and sediments. Frequently, such blooms are visible with the naked eye as purple to pink, peach, brown, or green layers. If they occur in the water column of lakes, such “bacterial plates” can extend over a depth of several meters (Takahashi and Ichimura, 1968; Biebl and Pfennig, 1979; Parkin and Brock, 1980b; Guerrero et al., 1985; Gorlenko, 1988). In sediments, the gradients of light intensity and sulfide concentration are much steeper (Jørgensen and Revsbech, 1983; van Gemerden et al., 1989; Visscher et al., 1990) and, as a result, the layers of phototrophic sulfur bacteria are only millimeters to centimeters thick (Nicholson et al., 1987; van Gemerden et al., 1989).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, A. L., Baker, K. K., and Tyler, P. A., 1985, A family of pneumatically-operated thin layer samplers for replicate sampling of heterogenous water columns, Hydrobiologia 22: 107–211.

    Google Scholar 

  • Biebl, H., and Pfennig, N., 1979, Anaerobic CO, uptake by phototrophic bacteria. A review, Arch. Hydrobiol. Beih. Ergeb. Limnol. 12: 48–58.

    Google Scholar 

  • Brown, S. R., McIntosh, H. J., and Smol, J. P., 1984, Recent paleolimnology of a meromictic lake: Fossil pigments of photosynthetic bacteria, Verh. Int. Ver. Limnol. 22: 1357–1360.

    Google Scholar 

  • Caumette, P., Pagano, M., and Saint-Jean, L., 1983, Répartition verticale du phytoplancton, des bactéries et du zooplancton dans un milieu stratifié en Baie de Biétri (Langune Ebrié, Cote d’Ivoire). Relations trophiques, Hydrobiologia 106: 135–148.

    Article  Google Scholar 

  • Cho, B. C., Azam, F., 1990, Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone, Mar. Ecol. Prog. Ser. 63: 253–259.

    Article  CAS  Google Scholar 

  • Chróst, R. J., 1991, Environmental control of the synthesis and activity of aquatic microbial ectoenzymes, in: Microbial Enzymes in Aquatic Environments ( R. J. Chróst, ed.), Springer, New York, pp. 29–59.

    Chapter  Google Scholar 

  • Cloern, J. E., Cole, B. E., and Oremland, R. S., 1983, Autotrophic processes in meromictic Big Soda Lake, Nevada, Limnol. Oceanogr. 28: 1049–1061.

    Article  CAS  Google Scholar 

  • Cloern, J. E., Cole, B. E., and Wienke, S. M., 1987, Big Soda Lake (Nevada). 4. Vertical fluxes of particulate matter: seasonality and variations across the chemocline, Limnol. Oceanogr. 32: 815–824.

    Article  CAS  Google Scholar 

  • Cohen, Y., Krumbein, W. E., and Shilo, M., 1977, Solar Lake (Sinai) 2. Distribution of photosynthetic microorganisms and primary production, Limnol. Oceanogr. 22: 609–620.

    CAS  Google Scholar 

  • Cole, J. J., Findlay, S., and Pace, M. L., 1988, Bacterial production in fresh and saltwater ecosystems: a cross-system overview, Mar. Ecol. Prag. Ser. 43: 1–10.

    Article  Google Scholar 

  • Culver, D. A., and Brunskill, G. J., 1969, Fayetteville Green Lake, New York. V. Studies of primary production and zooplankton in a meromictic marl lake, Limnol. Oceanogr. 14: 862–873.

    Article  CAS  Google Scholar 

  • Czeczuga, B., and Gradzki, F., 1973, Relation between extracellular and cellular production in the sulfuric green bacterium Chlorobium limicola Nads. as compared to primary production of phytoplankton, Hydrohiologia 42: 85–95.

    Article  Google Scholar 

  • Drews, G., 1985, Structure and functional organization of light-harvesting complexes and photochemical reaction centers in membranes of phototrophic bacteria, Microbiol. Rev. 49: 59–70.

    PubMed  CAS  Google Scholar 

  • Eichler, B., and Pfennig, N., 1990, Seasonal development of anoxygenic phototrophic bacteria in a holomictic drumlin lake (Schleinsee, F. R. G.), Arch. Hvdrobiol. 119: 369–392.

    Google Scholar 

  • Fowler, C. F., Nugent, N. A., and Fuller, R. C., 1971, The isolation and characterization of a photochemically active complex from Chloropseudomonas ethylica, Proc. Natl. Acad. Sci. USA 68: 2278–2282.

    Article  PubMed  CAS  Google Scholar 

  • Fründ, C., and Cohen, Y., 1992, Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats, Appl. Environ. Microbiol. 58: 70–77.

    Google Scholar 

  • Fry, B., 1986, Sources of carbon and sulfur nutrition for consumers in three meromictic lakes of New York State, Limnol Oceanogr. 31: 79–88.

    Article  PubMed  CAS  Google Scholar 

  • Gorlenko, V. M., 1988, Ecological niches of green sulfur and gliding bacteria, in: Green Photosynthetic Bacteria ( J. M. Olson, J. G. Ormerod, J. Amesz, E. Stakebrandt, and H. G. Trüper, eds.), Plenum Press, New York, pp. 257–267.

    Chapter  Google Scholar 

  • Gorlenko, V. M., Dubinina, G. A., and Kuznetsov, S. I., 1983, The ecology of aquatic microorganisms, in: Die Binnengewässer, Bd. 28, Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.

    Google Scholar 

  • Grant, W. D., and Tindall, B. J., 1986, The alkaline saline environment, in: Microbes in Extreme Environments, ( R. A. Herbert, and G. A. Codd, eds.) Academic Press, London, pp. 25–54.

    Google Scholar 

  • Guerrero, R., Montesinos, E., Pedrós-Alió, C., Esteve, I., Mas, J., van Gemerden, H., Hofman P. A. G., and Bakker, J. F., 1985, Phototrophic sulfur bacteria in two Spanish lakes: Vertical distribution and limiting factors, Limnol. Oceanogr. 30: 919–931.

    Article  CAS  Google Scholar 

  • Guerrero, R., Pedrós-Alió, C., Esteve, I., and Mas, J., 1987, Communities of phototrophic sulfur bacteria in lakes of the Spanish Mediterranean region, Acta Academiae Aboensis 47: 125–151.

    Google Scholar 

  • Hall, K. J., and Northcote, T. G., 1986, A novel terrestrial—freshwater linkage: Robin predation on damselfly nymphs, Discovery (Canada) 15: 107–109.

    Google Scholar 

  • Hall, K. J., and Northcote, T. G., 1990, Production and decomposition processes in a saline meromictic lake, Hydrobiologia 197: 115–128.

    Article  CAS  Google Scholar 

  • Hammer, T. U., 1978, The saline lakes of Saskatchewan III. chemical characterization, Int. Rev. Ges. Hydrobiol. 63: 311–335.

    Article  CAS  Google Scholar 

  • Hammer, T. U., 1986, Saline lake ecosystems of the world, Monographiae Biologicae, Vol. 59, W. Junk Publishers, Dordrecht.

    Google Scholar 

  • Heinrichs, M. L., 1995, Chironomid-based paleosalinity reconstruction of three lakes in the south-central interior of British Columbia, Canada. M. Sc. thesis, Simon Fraser University, Vancouver, Canada.

    Google Scholar 

  • Javor, B., 1983, Planktonic standing crop and nutrients in a saltern ecosystem, Limnol. Oceanogr. 28: 153–159.

    CAS  Google Scholar 

  • Javor, B., 1984, Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements, Appl. Environ. Microbiol. 48: 352–360.

    CAS  Google Scholar 

  • Javor, B., 1989, Hypersaline environments, Brock/Springer Series in Contemporary Bioscience. Springer, Berlin.

    Google Scholar 

  • Jørgensen, B. B., 1978, A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments, Geomicrobiol. J. 1: 49–64.

    Article  Google Scholar 

  • Jørgensen, B. B., 1982, Ecology of the bacteria of the sulphur cycle with special reference to anoxicoxic interface environments, Phil. Trans. R. Soc. Lond. B 298: 543–561.

    Article  Google Scholar 

  • Jørgensen, B. B., and Cohen, Y., 1977, Solar Lake (Sinai). 5. The sulfur cycle of the benthic microbial mats, Limnol. Oceanogr. 22: 657–666.

    Article  Google Scholar 

  • Jørgensen, B. B., and Revsbech, N.P., 1983, Colorless sulfur bacteria, Beggiatoa spp. And Thiovulum spp., in O, and H,S microgradients, Appl. Environ. Microbiol. 45: 1261–1270.

    Google Scholar 

  • Jørgensen, B. B., Kuenen, J. G., and Cohen, Y., 1979, Microbial transformations of sulfur compounds in a stratified lake (Solar Lake, Sinai), Limnol. Oceanogr. 24: 799–822.

    Article  Google Scholar 

  • Karl, D. M., and Knauer, G. A., 1991, Microbial production and particle flux in the upper 350 m of the Black Sea, Deep-Sea Res. 38: S921 — S942.

    Article  Google Scholar 

  • Lawrence, J. R., Haynes, R. C., and Hammer, U. T., 1978, Contribution of photosynthetic green sulfur bacteria to total primary production in a meromictic saline lake, Verh. Int. Ver. Limnol. 20: 201–207.

    Google Scholar 

  • Leavitt, P. R., and Carpenter, S. R., 1990, Aphotic pigment degradation in the hypolimnion: Implications for sedimentation studies and paleolimnology, Limnol. Oceanogr. 35: 520–534.

    Article  CAS  Google Scholar 

  • Lowe, D. J., Green, J. D., Northcote, T. G., and Hall, K. J., 1997, Fluctuating levels of a meromictic lake: evidence for Holocene climate flickering, J. Quaternary Sciences (in review).

    Google Scholar 

  • Mas, J., Pedrós-Alió, C., and Guerrero, R., 1990, In situ specific loss and growth rates of purple sulfur bacteria in Lake Cisó, FEMS Microbiol. Ecol. 73: 271–281.

    Google Scholar 

  • Montesinos, E., Guerrero, R., Abella, C., and Esteve, I., 1983, Ecology and physiology of the competition for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural habitats, Appt Environ. Microbiol. 46: 1007–1016.

    CAS  Google Scholar 

  • Morris, D. P., and Lewis, W. M., 1992, Nutrient limitation of bacterioplankton growth in Lake Dillon, Colorado, Limnol, Oceanogr. 37: 1179–1192.

    CAS  Google Scholar 

  • Nicholson, J. A. M., Stolz, J. F., and Pierson, B. K., 1987, Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts, FEMS Microbiol. Ecol. 45: 343–364.

    Article  Google Scholar 

  • Northcote, T. G., and Hall, K. J., 1983, Limnological contrasts and anomalies in two adjacent saline lakes, Hydrobiologia 105: 179–194.

    Article  CAS  Google Scholar 

  • Northcote, T. G., and Hall, K. J., 1990, Vernal microstratification patterns in a meromictic saline lake: Their causes and biological significance, Hydrobiologia 197: 105–114.

    Article  CAS  Google Scholar 

  • Northcote, T. G., and Halsey, T. G., 1969, Seasonal changes in the limnology of some meromictic lakes in southern British Columbia, J. Fish. Res. Bd. Canada 26: 1763–1787.

    Article  CAS  Google Scholar 

  • Oren, A., 1983, Population dynamics of halobacteria in the Dead Sea water column, Limnol. Oceanogr. 28: 1094–1103.

    Article  Google Scholar 

  • Overmann, J., and Pfennig, N., 1992, Buoyancy regulation and aggregate formation in Amoebobacter purpureus from Mahoney Lake, FEMS Microbiol. Ecol. 101: 67–79.

    CAS  Google Scholar 

  • Overmann, J. and Tilzer, M. M., 1989, Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake (Mittlerer Buchensee, West Germany), Aqual. Sci. 51: 261–278.

    Article  Google Scholar 

  • Overmann, J., Beatty, J. T., Hall, K. J., Pfennig, N., and Northcote, T. G., 1991, Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake, Limnol. Oceanogr. 36: 846–859.

    Article  CAS  Google Scholar 

  • Overmann, J., Cypionka, H., and Pfennig, N., 1992a, An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea, Limnol. Oceanogr. 37: 150–155.

    Article  CAS  Google Scholar 

  • Overmann, J., Fischer, U., and Pfennig, N., 1992b, A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio winogradskyi gen. nov. and spec. nov, Arch. Microbiol. 157: 329–335.

    Article  CAS  Google Scholar 

  • Overmans, J., Sandmann, G., Hall, K. J., and Northcote, T. G., 1993, Fossil carotenoids and paleolimnology of meromictic Mahoney Lake, British Columbia, Canada, Aquatic Sciences 55: 31–39.

    Article  Google Scholar 

  • Overmann, J., Beatty, J. T., and Hall, K. J., 1994, Photosynthetic activity and population dynamics of Amoebobacter purpureus in a meromictic saline lake, FEMS Microbiol. Ecol. 15: 309–320.

    Article  CAS  Google Scholar 

  • Overmann, J., Beatty, J. T., Krouse, H. R., and Hall, K. J., 1996a, The sulfur cycle in the chemocline of a meromictic salt lake, Limnol. Oceanogr. 41: 147–156.

    Article  CAS  Google Scholar 

  • Overmann, J., Beatty, J. T., and Hall, K. J., 1996b, Purple sulfur bacteria control the growth of aerobic heterotrophic bacterioplankton in a meromictic salt lake, Appl. Environ. Microbiol. 62: 3251–3258.

    PubMed  CAS  Google Scholar 

  • Parkin, T. B., and Brock, T. D., 1980a, The effects of light quality of phototrophic bacteria in lakes. Arch. Microbiol. 125: 19–27.

    Article  CAS  Google Scholar 

  • Parkin, T. B., and Brock, T. D., 1980b, Photosynthetic bacterial production in lakes: The effects of light intensity, Limnol. Oceanogr. 25: 711–718.

    Article  Google Scholar 

  • Parkin, T. B., and Brock, T. D., 198la, Photosynthetic bacterial production and carbon mineralization in a meromictic lake, Arch. Hvdrohiol. 91: 366–382.

    Google Scholar 

  • Parkin, T. B., and Brock, T. D., 1981 b, The role of phototrophic bacteria in the sulfur cycle of a meromictic lake, Limnol. Oceanogr. 26: 880–890.

    Google Scholar 

  • Pfennig, N., 1978, General physiology and ecology of photosynthetic bacteria, in: The Photosynthetic Bacteria ( R. K. Clayton, and W. R. Sistrom, eds.) Plenum Press, New York, pp. 3–18.

    Google Scholar 

  • Pfennig, N., and Biebl, H., 1976, Desulfúromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium, Arch. Microbiol. 110: 3–12.

    CAS  Google Scholar 

  • Scudder, G. G. E., 1969, The fauna of saline lakes on the Fraser Plateau in British Columbia, Verh. Internat. Verein. Limnol. 17: 430–439.

    Google Scholar 

  • Scudder, G. G. E., 1983, A review of factors governing the distribution of two closely related corixids in the saline lakes of British Columbia, Hydrobiologia 105: 143–154.

    Article  Google Scholar 

  • Shiah, F.-K., and Ducklow, H. W., 1994, Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay, Limnol. Oceanogr. 39: 1243–1258.

    Article  Google Scholar 

  • Skyring, G. W., and Bauld, J., 1990, Microbial mats in coastal environments, in: Advances in Microbial Ecology Vol. I1, ( K. C. Marshall, ed.), Plenum Press, New York, pp. 461–498.

    Chapter  Google Scholar 

  • Smith, R. L., and Oremland, R. S., 1987, Big Soda Lake (Nevada). 2. Pelagic sulfate reduction, Limnol. Oceanogr. 32: 794–803.

    Article  CAS  Google Scholar 

  • Sorokin, Yu. I., 1970, Interrelations between sulphur and carbon turnover in meromictic lakes, Arch Hydrobiol. 66: 391–446.

    Google Scholar 

  • Steenbergen, C. L. M., 1982, Contribution of photosynthetic sulphur bacteria to primary production in Lake Vechten, Hydrobiologia 95: 59–64.

    Article  Google Scholar 

  • Takahashi, M., and Ichimura, S., 1968, Vertical distribution of organic matter production of photosynthetic sulfur bacteria in Japanese lakes, Limnol. Oceanogr. 13: 644–655.

    Article  Google Scholar 

  • Thienemann, A., 1925, Die Binnengewässer Mitteleuropas, in: Die Binnengewässer, Vol. 1, Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.

    Google Scholar 

  • Gemerden, H., 1967, On the bacterial sulfur cycle of inland waters, Ph. D. thesis, Rijksuniversiteit, Leiden.

    Google Scholar 

  • Gemerden, H., 1968, Growth measurement of Chromatium cultures. Arch. Mikrohiol. 64: 103–110.

    Article  Google Scholar 

  • Gemerden, H., and Mas, J., 1995, Ecology of purple sulfur bacteria. In: Anoxygenic Photosynthetic Bacteria ( R. E. Blankenship, M. T. Madigan, and C. E. Bauer, eds.), Kluwer Academic Publishers, Boston, pp. 49–85.

    Google Scholar 

  • Gemerden, H., Montesinos, E., Mas, J., and Guerrero, R., 1985, Diel cycle of metabolism of phototrophic purple sulfur bacteria in Lake Cis (Spain), Limnol. Oceanogr. 30: 932–943.

    Article  Google Scholar 

  • Gemerden, H., Tughan C. S., de Wit, R., and Herbert R. A., 1989, Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands, FEMS Microbiol. Ecol. 62: 87–102.

    Article  Google Scholar 

  • Visscher, P. T., Nijburg, J. W., and van Gemerden, H., 1990, Polysulfide utilization by Thiocapsa roseopersicina, Arch. Microbiol. 155: 75–81.

    Article  CAS  Google Scholar 

  • Waiser, M. J., and Robarts, R. D., 1995, Microbial nutrient limitation in prairie saline lakes with high sulfate concentrations, Limnol. Oceanogr. 40: 566–574.

    Article  CAS  Google Scholar 

  • Wetzel, R. G., 1983, Limnology, 2nd edition, Saunders, New York.

    Google Scholar 

  • Widdel, F., 1988, Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: Biology of Anaerobic Microorganisms ( A. J. B. Zehnder, ed.), John Wiley and Sons, New York, pp. 469–585.

    Google Scholar 

  • Zehr, J. P., Harvey, R. W., Oremland, R. S., Cloern, J. E., and George, L. H., 1987, Big Soda Lake (Nevada). 1. Pelagic bacterial heterotrophy and biomass, Limnol. Oceanogr. 32: 781–793.

    Article  CAS  Google Scholar 

  • Züllig, H., 1985, Pigmente phototropher Bakterien in Seesedimenten und ihre Bedeutung für die Seenforschung, Schweiz. Z. Hydro!. 47: 87–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Overmann, J. (1997). Mahoney Lake: A Case Study of the Ecological Significance of Phototrophic Sulfur Bacteria. In: Jones, J.G. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9074-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9074-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9076-4

  • Online ISBN: 978-1-4757-9074-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics