Skip to main content

Individual Difference of Methylmercury Metabolism in Animals and Its Significance in Methylmercury Toxicity

  • Chapter

Part of the book series: Rochester Series on Environmental Toxicity ((RSET))

Abstract

Various factors affect the absorption, distribution, biotransformation, excretion of methylmercury (MeHg), and consequently its toxicity. The most important is the influence of genetically determined factors such as species, sex, and the molecular structure of binding substances. Environments, e. g. nutrition, coexisting metals, etc., are also important for MeHg toxicity. It is well known that the greater part of MeHg exists in erythrocytes in the form bound to hemoglobin. The molecular structures of hemoglobin shows the most remarkable effect on the binding of MeHg. The number and position of cysteinyl residues in the hemoglobin determine the affinity of hemoglobin to MeHg and the distribution of MeHg in an erythrocyte. The role of molecular structures of the binding substances of MeHg in the brain and other organs remains to be elucidated in the future.

Sex has a role on the tissue distribution and half-time of MeHg. Usually female mice showed higher tissue MeHg levels and longer half-times than male mice when they were given the same dose of MeHg per body weight. The role of the sex hormone to the organ distribution of MeHg has been reported by Hirayama et al. (1987). The age of the animals also has a role on the distribution of MeHg in mice. Usually young mice have a lower blood MeHg level than the older mice at the same dose.

Physiological conditions, such as local blood flow and erythrocyte count have some effect on the distribution and elimination of MeHg in the blood, brain and liver. Polyerythrocytemic mice due to long term exposure to CO, showed a higher organ MeHg distribution and a shorter half-time of MeHg. Thus local ischemia, anemia or polycytemia may affect the tissue distribution of MeHg.

The individual differences of MeHg metabolism in man remain to be studied (Al-Shahristani and Shihab, 1974).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Shahristani, H. and Shihab, K. M., 1974. Variation of biological half-life of methyl-mercury in man. Arch. Environ. Health 28:342–344.

    Article  PubMed  CAS  Google Scholar 

  • Beutler, E., Duron, O., and Kelly, B. M., 1963. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 61:882–888.

    PubMed  CAS  Google Scholar 

  • Birke, G., Johnels, A. G., Plantin, L-O., Sjostrand, B., Skerfving, S. and Westermark, T., 1972. Studies on humans exposed to methylmercury through fish consumption. Arch. Environ. Health 25:77–91.

    Article  PubMed  CAS  Google Scholar 

  • Clarkson, T. W., Small, H. and Norseth, T., 1973. Excretion and absorption of methylmercury after polythiol resin treatment. Arch. Environ. Health 26:173–176.

    Article  PubMed  CAS  Google Scholar 

  • Dayhoff, M. O., Hunt, L. T., McLaughlin, P. J. and Barker, W. C., 1972. Globins. In: Atlas of Protein Sequence and Structure. M. O. Dayhoff, ed. Vol. 5, D-51-85. National Biomedical Research Foundation, Washington, D. C.

    Google Scholar 

  • Doblar, D. D., Santiago, T. V. and Edelman, N. H., 1977. Correlation between ventilatory and cerebrovascular responses to inhalation of Co. J. Appl. Physiol. 43:456–462.

    Google Scholar 

  • Doi, R., 1986. Strain differences in excretion of methylmercury in mice. Bull. Environ. Contam. Toxicol. 36:500–505.

    Article  PubMed  CAS  Google Scholar 

  • Doi, R. and Kobayashi, T., 1982. Organ distribution and biological half-time of methyl-mercury in four strains of mice. Jpn. J. Exp. Med. 52:307–314.

    PubMed  CAS  Google Scholar 

  • Doi, R. and Mochizuki, Y., 1982. Chemobiokinetics of methylmercury: Effects of age and sex of mice to the distribution and excretion of methylmercury. Jpn J. Hyg. 37: 143 (in Japanese).

    Google Scholar 

  • Doi, R. and Tagawa, M., 1983. A study on the biochemical and biological behavior of methylmercury. Toxicol. Appl. Pharmacol. 69:407–416.

    Article  PubMed  CAS  Google Scholar 

  • Doi, R., Tagawa, M., Tanaka, H. and Nakaya, K., 1983. Hereditary analysis of the strain difference of methylmercury distribution in mice. Toxicol. Appl. Pharmacol. 69:400–406.

    Article  PubMed  CAS  Google Scholar 

  • Doi, R. and Tanaka, H., 1984. Effects of carbon monoxide exposure on the distribution of methylmercury in mice. J. Toxicol. Sci. 9:11–22.

    Article  PubMed  CAS  Google Scholar 

  • Gabard, B., 1976. Treatment of methylmercury poisoning in the rat with sodium 2, 3-dimercaptopropane-1-sulfonate: Influence of dose and mode of administration. Toxicol. Appl. Pharmacol. 38:415–424.

    Article  PubMed  CAS  Google Scholar 

  • Hirayama, K., 1980. Effect of amino acids on brain uptake of methyl mercury. Toxicol. Appl. Pharmacol. 55:318–323.

    Article  PubMed  CAS  Google Scholar 

  • Hirayama, K., 1985. Effects of combined administration of thiol compounds and methylmercury chloride on mercury distribution in rats. Biochem. Pharmacol. 34:2030–2032.

    Article  PubMed  CAS  Google Scholar 

  • Hirayama, K. and Yasutake, A., 1986. Sex and age differences in mercury distribution and excretion in methylmercury-administered mice. J. Toxicol. Environ. Health 18:49–60.

    Article  PubMed  CAS  Google Scholar 

  • Hirayama, K., Yasutake, A. and Inouye, M., 1987. Effect of sex hormones on the fate of methylmercury and on glutathione metabolism in mice. Biochem. Pharmacol. 36:1919–1924.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, J. M., Rubenstein, B. and Paleker, A. G., 1982. Role of magnesium in gluthione metabolism of rat erythrocytes. J. Nutr. 112:488–496.

    PubMed  CAS  Google Scholar 

  • Inouye, M., Kajiwara, Y. and Hirayama, K., 1986. Dose-and sex-dependent alterations in mercury distribution in fetal mice following methylmercury exposure. J. Toxicol. Environ. Health 19:425–435.

    Article  PubMed  CAS  Google Scholar 

  • Jocelyn, P. C., 1967. An assay for glutathione in acid solution. Anal. Biochem. 18:493–498.

    Article  CAS  Google Scholar 

  • Kershaw, T. G., Clarkson, T. W. and Dhahir, P. H., 1980. The relationship between blood levels and dose of methylmercury in man. Arch. Environ. Health. 35:28–36.

    PubMed  CAS  Google Scholar 

  • Klaassen, C. D., 1975. Biliary excretion of mercury compounds. Toxicol. Appl. Pharmacol. 33:356–365.

    Article  PubMed  CAS  Google Scholar 

  • Landry, T. D., Doherty, R. A. and Gates, A. H., 1979. Effects of three diets on mercury excretion after methylmercury administration. Bull. Environ. Contam. Toxicol. 22:151–158.

    Article  PubMed  CAS  Google Scholar 

  • Lok, E., 1983. The effect of weaning on blood, hair, fecal and urinary mercury after chronic ingestion of methylmercuric chloride by infant monkeys. Toxicol. Letters 15:147–152.

    Article  CAS  Google Scholar 

  • Magos, L., Peristianis, G. C., Clarkson, T. W., Brown, A., Preston, S. and Snowden, R. T., 1981. Comparative study of the sensitivity of male and female rats to methylmercury. Arch. Toxicol. 48:11–20.

    Article  PubMed  CAS  Google Scholar 

  • McNeil, T. L., and Beck, L. V, 1968. Fluorometric estimation of GSH-OPT. Anal. Biochem. 22:431–441.

    Article  PubMed  CAS  Google Scholar 

  • Miettinen, J. K., 1973. Absorption and elimination of dietary mercury (Hg2+) and methylmercury in man. In: Mercury, Mercurials and Mercaptans. M. W. Miller and T. W. Clarkson, eds. C. C. Thomas, Springfield, IL, pp. 233–243.

    Google Scholar 

  • Nomiyama, K., Matsui, K. and Nomiyama, H., 1980. Effects of temperature and other factors on the toxicity of methylmercury in mice. Toxicol. Appl. Pharmacol. 56:392–398.

    Article  PubMed  CAS  Google Scholar 

  • Paulson, O. B., Parving, H-H., Olsen, J. and Skinhoj, E., 1973. Influence of carbon monoxide and of hemodilution on cerebral blood flow and blood gases in man. J. Appl. Physiol. 35:111–116.

    PubMed  CAS  Google Scholar 

  • Pitt, B. R., Radford, E. P., Gurtner, G. H. and Traystman, R. J., 1979. Interaction of carbon monoxide and cyanide on cerebral circulation and metabolism. Arch. Environ. Health 34:354–359.

    Article  CAS  Google Scholar 

  • Rowland, I., Davies, M. and Grasso, P., 1977. Biosynthesis of methylmercury compounds by the intestinal flora of the rat. Arch. Environ. Health 32:24–28.

    Article  PubMed  CAS  Google Scholar 

  • Rowland, L. R., Davies, M. J. and Evans, J. G., 1980. Tissue content of mercury in rats given methylmercuric chloride orally: Influence of intestinal flora. Arch. Environ. Health 35:155–160.

    Article  PubMed  CAS  Google Scholar 

  • Rowland, L. R., Robinson, R. D. and Doherty, R. A., 1984. Effects of diet on mercury metabolism and excretion in mice given methylmercury: Role of gut flora. Arch. Environ. Health 39:401–408.

    Article  PubMed  CAS  Google Scholar 

  • Rowland, I. R., Mallett, A. K., Flynn, J. and Hargreaves, R. J., 1986. The effect of various dietary fibres on tissue concentration and chemical form of mercury after methylmercury exposure in mice. Arch. Toxicol. 59:97–98.

    Article  Google Scholar 

  • Sager, P. R., Aschner, M. and Rodier, P.M., 1984. Persistent, differential alterations in developing cerebellar cortex of male and female mice after methylmercury exposure. Devel. Brain Res. 12:1–11.

    Article  CAS  Google Scholar 

  • Seko, Y., Miura, T., Takahashi, M. and Koyama, T., 1981. Methyl mercury decomposition in mice treated with antibiotics. Acta Pharmacol. Toxicol. 49:259–265.

    Article  CAS  Google Scholar 

  • Srivastava, S. T. and Beutler, E., 1968. Accurate measurement of oxidized glutathione content of human, rabbit and rat red blood cells and tissues. Anal. Biochem. 25:70–76.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, T., Shishido, S. and Ishihara, N., 1976. Different behaviour of inorganic and organic mercury in renal excretion with reference to effects of D-penicillamine. Brit. J. Indust. Med. 33:88–91.

    CAS  Google Scholar 

  • Takahashi, H., Hirayama, K. and Ikegami, Y., 1975. Resin for methyl mercury elimination in rats. Kumamoto Med. J. 28:60–62.

    PubMed  CAS  Google Scholar 

  • Tamashiro, H., Arakaki, M., Akagi, H., Murao, K. and Hirayama, K., 1985. Factors influencing methyl mercury toxicity in rats-Effects of ethanol. Jpn. J. Pub. Health 32:397–402 (in Japanese with English abstract).

    CAS  Google Scholar 

  • Thomas, D. J. and Smith, J. C., 1982. Effects of coadministrated low-molecular-weight thiol compounds on short-term distribution of methyl mercury in the rat. Toxicol. Appl. Pharmacol. 62:104–110.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D. J., Fisher, H. L., Hall, L. L. and Mushak, P., 1982. Effects of age and sex on retention of mercury by methyl mercury-treated rats. Toxicol. Appl. Pharmacol. 62:445–454.

    Article  PubMed  CAS  Google Scholar 

  • Tietze, F., 1969. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione. Anal. Biochem. 27:502–522.

    Article  PubMed  CAS  Google Scholar 

  • Yasutake, A. and Hirayama, K., 1986. Strain difference in mercury excretion in methylmercury-treated mice. Arch. Toxicol. 59:99–102.

    Article  PubMed  CAS  Google Scholar 

  • Yonaga, T. and Monta, K., 1981. Comparison of the effect of N-(2,3-dimercaptopropyl) phthalamidic acid, DL-penicillamine, and dimercaprol on the excretion of tissue retention of mercury in mice. Toxicol. Appl. Pharmacol. 57:197–207.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Doi, R. (1991). Individual Difference of Methylmercury Metabolism in Animals and Its Significance in Methylmercury Toxicity. In: Suzuki, T., Imura, N., Clarkson, T.W. (eds) Advances in Mercury Toxicology. Rochester Series on Environmental Toxicity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9071-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9071-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9073-3

  • Online ISBN: 978-1-4757-9071-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics