Skip to main content

Mercury in Human Ecology

  • Chapter
Advances in Mercury Toxicology

Part of the book series: Rochester Series on Environmental Toxicity ((RSET))

Abstract

Mercury has existed in the human environment at every stage of human evolution. Therefore, how was, and is, human adaptation to the existing level of mercury to be clarified to approach the limitation in our adaptability. For this, it is necessary to evaluate the environmental characteristics of each local human ecosystem.

  1. 1.

    Mercury in a tropical human ecosystem with traditional ways of living.

    In an ecosystem in the Papua lowlands, mercury, mostly in the form of methylmercury, is found in fishes and reptiles at elevated levels. Mercury levels are correlated with the stable isotope ratio of nitrogen (15N/14N) in animal food which indicates a biomagnification of mercury accumulation through the food chain. In animal foods, mercury to selenium ratio is getting close to unity on the molar basis with increasing mercury levels. Dietary mercury intake and hair mercury levels in the fish-eating sector are comparable with those in developed countries. Balance between Se and Hg in the dietary intake is inclined to relative excess of Se to Hg.

  2. 2.

    Mercury in an urbanized ecosystem (Tokyo).

    In an urbanized ecosystem in an industrialized country, the major source of mercury is via fish consumption. In organs obtained from forensic autopsy cases in Tokyo, methylmercury levels are uniform through all the organs (30 to 50 ng/g on average) except the liver (113 ng/g), but inorganic mercury levels are high in the liver and kidney (266 to 456 ng/g) and low in the brain, heart and spleen (4 to 9 ng/g). Selenium levels are significantly correlated with mercury levels in some organs, particularly in the kidney, where% inorganic to total mercury is as high as 85%.

    From these results and additionally the results obtained on harbor seals caught in the Okhotsk sea, the role of selenium in adapting environmental mercury will be hypothetically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoi, T., Higuchi, T., Kidokoro, R., Fukumura, R., Yagi, A., Ohguchi, S., Sasa, A., Hayashi, H., Sakamoto, N., and Hanaichi, T., 1985, An association of mercury with selenium in inorganic mercury intoxication, Hum. Toxicol., 4:637.

    Article  PubMed  CAS  Google Scholar 

  • Chmiielnicka, J., Komsta-Szuumska, E., and Zareba, G., 1983, Effect of interaction between 65Zn, mercury and selenium in rats (retention, metallothionein, endogenous copper), Arch.Toxicol., 53:165.

    Google Scholar 

  • Chmielnicka, J., Brzeznicka, E., Sniady, A., 1986, Kidney concentrations and urinary excretion of mercury, zinc and copper following the administration of mercuric chloride and sodium selenite to rats, Arch. Toxicol., 59:16.

    Article  PubMed  CAS  Google Scholar 

  • DeNiro, M. J., and Epstein, S., 1978, Influence of diet on the distribution of carbon isotopes in animals, Geochim. Cosmochim. Acta, 42:495.

    Article  CAS  Google Scholar 

  • DeNiro, M. J., and Epstein, S., 1981, Influence of diet on the distribution of nitrogen isotopes in animals, Geochim. Cosmochim. Acta, 45:341.

    Article  CAS  Google Scholar 

  • Dunn, M. A., Blalock, T. L., and Cousins, R. J., 1987, Metallothionein, Proc. Soc. Experim. Biol. Med., 185:107.

    Article  CAS  Google Scholar 

  • Harris, D. R. (ed.) 1980, “Human Ecology in Savanna Environment”, Academic Press, London.

    Google Scholar 

  • Himeno, S., Watanabe, C., Hongo, T., Suzuki, T., Naganuma, A., Imura, N., Morita, M., 1989, Body size and organ accumulation of mercury and selenium in young harbor seals, (Phoca vitulina), Bull. Environ. Contam. Toxicol., 42:503.

    Article  PubMed  CAS  Google Scholar 

  • Hongo, T., Suzuki, T., Ohtsuka, R., Kawabe, T. Inaoka, T., and Akimichi, T., 1989, Element intake of the Gidra in lowland Papua: Inter-village variation and the comparison with contemporary levels in developed countries, Ecol. Food Nutr., 23:293.

    Article  Google Scholar 

  • Keoman, J. H., Peeters, W. H. M., Koudstaal-Hol, C. H. M., Tjioe, P. S., and de Goeij, J. J. M., 1973, Mercury-selenium correlations in marine mammals, Nature, 245:385.

    Article  Google Scholar 

  • Koeman, J. H., van de Ven, W. S. M., de Goeij, J. J. M., Tjioe, P. S., and van Haaften, J. L., 1975, Mercury and selenium in marine mammals and birds, Sci. Total Environ., 3:279.

    Article  PubMed  CAS  Google Scholar 

  • Komsta-Szumska, E., and Chmielnicka, J., 1981, Organ and subcellular distribution of mercury in rats in the presence of cadmium, zinc, copper, and sodium selenite, Clin. Toxicol., 18:1327.

    Article  PubMed  CAS  Google Scholar 

  • Kosta, L., Byrne, A. R., and Zelenko, V., 1975, Correlation between selenium and mercury in man following exposure to inorganic mercury, Nature, 254:238.

    Article  PubMed  CAS  Google Scholar 

  • Magos, L., Clarkson, T. W., Sparrow, S., and Hudson, A. R., 1987, Comparison of the protection given by selenite, selenomethionine and biological selenium against the renotoxicity of mercury, Arch. Toxicol., 60:422.

    Article  PubMed  CAS  Google Scholar 

  • Matsuo, N., Suzuki, T., and Akagi, H., 1989, Mercury concentration in organs of contemporary Japanese, Arch. Environ. Health, 44:298.

    Article  PubMed  CAS  Google Scholar 

  • Matsuo,. N., Suzuki, T., Yoshinaga, J., Hongo, T., and Akagi, H., Hair vs. organs: comparison of mercury concentrations in contemporary Japanese unpublished.

    Google Scholar 

  • Minagawa, M., and Wada, E., 1984, Stepwise enrichment of 15N along food chains: further evidence and the relation between 15N and animal age, Geochim. Cosmochim. Acta, 48:1135.

    Article  CAS  Google Scholar 

  • Ohtsuka, R., 1983, “Oriomo Papuans: Ecology of Sago-Eaters in Lowland Papua”, University of Tokyo Press, Tokyo.

    Google Scholar 

  • Ohtsuka, R. and Suzuki, T., 1978, Zinc, copper and mercury in Oriomo Papuan’s Hair, Ecol. Food Nutr. 6:243.

    Article  CAS  Google Scholar 

  • Ohtsuka, R., and Suzuki, T. (eds.), 1990, “Population Ecology of Human Survival, Bioecological Studies of the Gidra in Papua, New Guinea”, University of Tokyo Press, Tokyo.

    Google Scholar 

  • O’Leary, M. H., 1981, Carbon isotope fractionation in plants, Phytochem., 20:553.

    Article  Google Scholar 

  • Park, R., and Epstein, S., 1961, Metabolic fractionation of 13C and 13C in plants, Plant Physiol., 36:133.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, L. C., Clemente, G. F., and Santaroni, G., 1976, Mercury and selenium distribution in a defined area and its population, Arch. Environ. Health, 36:160.

    Article  Google Scholar 

  • Shirabe, T., Eto, K., and Takeuchi, T., 1979, Identification of mercury in the brain of Minamata disease victims by electron microscopic X-ray microanalysis, Neurotoxicology, 1:349.

    CAS  Google Scholar 

  • Suzuki, T., Watanabe, S., Hongo, T., Kawabe, T., Inaoka, T., Ohtsuka, R., and Akimichi, T., 1988, Mercury in scalp hair of Papuans in the Fly estuary, Papua, New Guinea, Asia-Pacific J. Publ. Health, 2:39.

    CAS  Google Scholar 

  • Suzuki, T., 1988, Selenium: Its Role in Metal-Metal Interaction, in: “Environmental and Occupational Chemical Hazards, Proceedings Asia-Pacific Symposium on Environmental and Occupational Toxicology,” K. Sumino, S. Iwai, H. P. Lee, C. N. Ong, and K. Saijoh, eds., 21–30, International Center for Medical Research, Kobe University School of Medicine, Kobe.

    Google Scholar 

  • Suzuki, T., 1989, Human adaptability to environmental pollutants, in particular methylmercury, Sangyo-Igaku Rebyu, 2:25, (in Japanese).

    Google Scholar 

  • Tohyama, C., Himeno, S., Watanabe, C., Suzuki T., and Monta, M., 1986, The relationship of the increased level of metallothionein with heavy metal levels in the tissue of the harbor seal (Phoca vitulina), Ecotoxicol. Environ. Safety, 12:85.

    Article  PubMed  CAS  Google Scholar 

  • Ujioka, T., 1960, Analytical studies on methylmercury in animal organs and foodstuff, J. Kumamoto Med. Assoc., 34 (Suppl. 1):383. (in Japanese)

    Google Scholar 

  • van Fleet, J. F., Boon, G. D., and Ferrans, V. J., 1981, Induction of lesions of selenium-vitamin E deficiency in weanling swine fed silver, cobalt, tellurium, zinc, cadmium and vanadium, Am. J. Vet. Res., 42:789.

    Google Scholar 

  • World Health Organization, 1972. Evaluation of certian food additives and contaminants, mercury, lead and cadmium. WHO Tech. Rep. Ser. No. 505.

    Google Scholar 

  • World Health Organization, IPCS International Programme on Chemical Safety, 1989, Environmental Health Criteria 86, Mercury-Environmental Aspects, WHO, Geneva.

    Google Scholar 

  • Yoshinaga, J., Matsuo, N., Imai, H., Nakazawa, M., Suzuki, T., Monta, M., and Akagi, H., 1990, Interrelationship between the concentrations of some elements in the organs of Japanese with special reference to selenium-heavy metal relations, Sci. Total Environ., 91:127.

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga, J., Minagawa, M., Suzuki, T., Ohtsuka, R., Kawabe, T., Hongo, T. Inaoka, T., and Akimichi, T. Carbon and nitrogen isotopic characterization for New Guinea Foods, Ecol. Food Nutr., in press.

    Google Scholar 

  • Yoshinaga, J., Suzuki, T., Hongo, T., Minagawa, M., Ohtsuka, R., Kawabe, T., Inaoka, T., and Akimichi, T. Mercury concentration correlates with nitrogen stable isotope ratio in animal food of Papuans. Ecotoxicol. Environ. Safety, in press.

    Google Scholar 

  • Yoshinaga, J., Suzuki, T., Ohtsuka, R., Kawabe, T., Hongo, T., Imai, H., Inaoka, T., and Akimichi, T. Dietary selenium intake of the Gidra, Papua, New Guinea. Ecol. Food. Nutr., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Suzuki, T. (1991). Mercury in Human Ecology. In: Suzuki, T., Imura, N., Clarkson, T.W. (eds) Advances in Mercury Toxicology. Rochester Series on Environmental Toxicity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9071-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9071-9_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9073-3

  • Online ISBN: 978-1-4757-9071-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics