Lactoferrin is Synthesized by Mouse Brain Tissue and Its Expression is Enhanced after MPTP Treatment

  • Carine Fillebeen
  • David Dexter
  • Valérie Mitchell
  • Monique Benaissa
  • Jean-Claude Beauvillain
  • Geneviève Spik
  • Annick Pierce
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 443)


The biological role and origin of human lactoferrin (Lf) within the brain in normal and disease processes are as yet uncharted. In this context the origin and expression of brain Lf in normal and MPTP (l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine)-treated mice were investigated using immunohisto chemistry, PCR amplification and in situ hybridization. Lf immunostaining was observed both on sections of mouse lactating mammary gland, which was used as a positive control, and brains from young, adult and aged mice. Lf immunoreactivity was present in the pituitary gland, the hippocampus and the cortex of mouse brains and to a greater extent in older mice. After reverse transcription, Lf transcripts were also found in these brain sections. Lf distribution and expression in the MPTP-induced parkinsonian mouse model were next investigated. A marked depletion of dopamine and its metabolites: dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxy indole acetic acid (5-HIAA) occurs in the high dose MPTP-treated mice. The level of Lf expression was found to be greatly increased in the same animals but Lf immunoreactivity detected in the same brain region was not found increased in the affected areas.


Mammary Gland MPTP Treatment Human Lactoferrin Mouse Brain Tissue Sodium Metabisulphite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sofic E., Riederer P., Heinsen H., Beckmann H., Reynolds G. P., Hebenstreit G. & Youdim M. B. H., 1988, J. Neural. Transm, 74, 199–205PubMedCrossRefGoogle Scholar
  2. 2.
    Connor J.R., Menzies S. L., St Martin S. M. & Mufson E., 1992, J. Neurosci. Res., 31, 75–83PubMedCrossRefGoogle Scholar
  3. 3.
    Jenner R, 1996, Neurology, 47, 161–170CrossRefGoogle Scholar
  4. 4.
    Dexter D., Carayon A., Javoy-Agid F., Agid Y., Wells F., Daniel S., Lees A. J., Jenner R. & Marsden C. D., 1991, Brain, 114, 1953–1975PubMedCrossRefGoogle Scholar
  5. 5.
    Faucheux B., Hirsch E., Villares J., Sclimi F., Mouatt-Pringent A., Javoy-Agid F., Hauw J.J. & Agid Y., 1993, J. Neurochem., 60, 2338–2341PubMedCrossRefGoogle Scholar
  6. 6.
    Connor J.R., & Benkovic, S.A., 1992, Ann. Neurol., 32, 51–61Google Scholar
  7. 7.
    Montreuil J. & Mullet S., 1960, C. R. Acad. Sci. Paris, 250, 1736–1737Google Scholar
  8. 8.
    Leveugle B., Spik G., Perl D., Bouras C., Fillit H. & Hof R, 1994, Brain Res., 650, 20–31PubMedCrossRefGoogle Scholar
  9. 9.
    Osmand A.P. & Switzer III R.C., 1991, in Alzheimer’s Disease: Basic mechanisms, diagnosis and therapeutic strategies (Igbal, K., McLachlan, D.R.C., Winblad, B. & Wisniewski, H.M. eds ), John Wisley & Sons, pp 219–228Google Scholar
  10. 10.
    Kawamata T., Tooyama I., Yamada T., Walker D. G. & McGeer P. L., 1993, Am. J. Pathol., 142, 1574–1585Google Scholar
  11. 11.
    Leveugle B., Faucheux B., Bouras C., Nillesse N., Spik G., Hirsch E.C., Agid Y. & Hof P. R., 1996, Acta Neuropathol., 91, 566–572PubMedCrossRefGoogle Scholar
  12. 12.
    Mazurier J., Legrand D., Hu W. L., Montreuil J. & Spik G., 1989, Eur. J. Biochem., 179, 481–487PubMedCrossRefGoogle Scholar
  13. 13.
    Faucheux B., Nillesse N., Damier R, Spik G., Mouatt-Pringent A., Pierce A., Leveugle B., Kubis N., Hauw J-J., Agid Y. & Hirsch E., 1995, Proc. Natl. Acad. Sci., 92, 9603–9607PubMedCrossRefGoogle Scholar
  14. 14.
    Rose S., Nomoto M. & Jenner P., 1989, Biochem. Pharmacol, 38, 3677–3681PubMedCrossRefGoogle Scholar
  15. 15.
    Ward R., Dexter D., Florence A., Aouad F., Hider R., Jenner R. & Crichton B., 1995, Biochem Pharmacol, 49, 1821–1826PubMedCrossRefGoogle Scholar
  16. 16.
    Langston J. W., 1996, Neurology, 47, 153–160CrossRefGoogle Scholar
  17. 17.
    Jucker M. & Ingram D. K., 1997, Behavioural Brain Research, 85, 1–25PubMedCrossRefGoogle Scholar
  18. 18.
    Chiba K., Trevor A. & Castagnoli N., 1984, Biophys. Biochim. Res. Comm., 120, 574–578Google Scholar
  19. 19.
    Chiba K., Trevor A. & Castagnoli N., 1985, Biophys. Biochim. Res. Comm., 128, 1228–1232CrossRefGoogle Scholar
  20. 20.
    Javitch J. A., D’Amato R. J., Strittmatter S. M. & Snyder S. H., 1985, Proc. Natl. Acad. Sci., 82, 2173–2177CrossRefGoogle Scholar
  21. 21.
    Vyas I., Heikkila R. E. & Nicklas W. J., 1986, J. Neurochem., 46, 1501–1507PubMedCrossRefGoogle Scholar
  22. 22.
    Rojas R. & Rios C., 1993, Pharmacol Toxicol., 72, 364–368PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Carine Fillebeen
    • 1
  • David Dexter
    • 2
  • Valérie Mitchell
    • 3
  • Monique Benaissa
    • 1
  • Jean-Claude Beauvillain
    • 3
  • Geneviève Spik
    • 1
  • Annick Pierce
    • 1
  1. 1.Laboratoire de Chimie Biologique UMR n°111 du CNRSUniversité des Sciences et Technologies de LilleVilleneuve d’Ascq cedexFrance
  2. 2.Charing Cross and Westminster Medical SchoolLondonUK
  3. 3.Unité U422 de l’INSERMNeuroendocrinologie et Physiopathologie NeuronaleLilleFrance

Personalised recommendations