Advertisement

Superconducting Properties of Sm and Nd Substituted BPSCCO-2212 System

  • S. Satyavathi
  • K. Nanda Kishore
  • M. Muralidhar
  • O. Pena
  • V. Hari Babu
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

Systematic substitutional studies in Bi1.7 Pb0.3 Sr2 Ca1-x REx Cu2 Oy (RE = Sm, Nd and 0.0 ≤ x ≤ 1.0) system were carried out in order to determine the effect of the magnetic moment and ionic radius of the rare-earth ion on the Tc suppression rate. The single phase nature was maintained for both the systems throughout the substitutional region. In both these tetragonal structured compounds, a-parameter increased and c-parameter decreased as the dopant concentration increased. The oxygen content was found to increase with increasing Sm/Nd concentration, increase being more for the Nd doped samples. Resistivity studies have shown that the samples exhibited metallic nature at lower concentrations of rare earth before becoming semiconducting. The resistivity results have also shown that Tc (onset)’s are more for Sm substituted samples when compared to Nd substituted ones. The hole carrier concentration was found to decrease with rare earth ion substitution. DC magnetization measurements have indicated a decrease in superconducting volume with x for both Sm and Nd doped samples. For the same composition x, the superconducting volumes were found to be less in Nd doped samples. The results have shown that substitution of Ca by Sm /Nd probably brings about changes in the hole carrier concentration, the change being more for Nd. Consequently the Tc suppression rate and decrease in superconducting volume were more for Nd substituted ones suggesting that the magnetic moment of the rare-earth ion plays an important role in addition to its valency state.

Keywords

Ionic Radius Hole Concentration Superconducting Property Excess Oxygen Insulator Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Maeda, M. Hase, I. Tsukada, K. Noda, S. Takebayashi and K. Uchinokura; Phy. Rev. B 41 (1990) 6418.CrossRefGoogle Scholar
  2. 2.
    Y. Yaroslavsky, M. Schieber, V. Beilin, S. Litvin, V. Burtman, V. Cinodman and D. Shaltiel Physica C 209 (1993) 179.Google Scholar
  3. 3.
    S.K. Agarwal, V.N. Murthy, G.L. Bhalla, V.P.S. Awana and A.V. Narlikar; Indian Journal of Pure and Applied Phys., 30 (1992) 586.Google Scholar
  4. 4.
    J.M. Tarascon, P. Barboux, G.W. Hull, R. Ramesh, L.H. Greene, M. Giroud, M.S. Hegde and W.R. McKinnon; Phy.Rev.B 39 (1989) 4316CrossRefGoogle Scholar
  5. 5.
    H.W. Zandbergen, W.A. Groen, A. Smit and G. Van Tendeloo; Physica C 168 (1990) 426.Google Scholar
  6. 6.
    F. Munakata, K. Matsuura, K. Kubo, T. Kawano and H. Yamauchi; Phy.Rev.B 45 (1992) 4912.CrossRefGoogle Scholar
  7. 7.
    Shi Lei, Lu Jiang, Jia Yunbo, Zhou Guien, I.V. Zubov, A.S. Hyushin and L.I. Leonyuk Superconducting Sci. & Technol. 6 (1993) 507.CrossRefGoogle Scholar
  8. 8.
    A.Q. Pham, N. Merrien, A. Maignan, F. Stude, C. Michel and B. Raveau; Physica C 210 (1993) 350.Google Scholar
  9. 9.
    C.S. Gopinath, S. Subramanian, P. Sumana Prabhu, M.S. Ramachander Rao and G.V. Subba Rao Physica C 218 (1993) 117.Google Scholar
  10. 10.
    C. Varoy H.J. Trodahl, R.G. Buckley and A.B. Kaiser; Phy.Rev.B 46 (1992) 463.CrossRefGoogle Scholar
  11. 11.
    S. Satyavathi, M. Muralidhar, K. Nanda Kishore, V. Hari Babu, O. Pena, M. Sergent and F. Beriere J.Appl.Superconductivity (1995) (In Press).Google Scholar
  12. 12.
    K. Nanda Kishore, M. Muralidhar, V. Hari Babu, O. Pena, M. Sergent and F. Beriere; Physica C 204 (1993) 299.Google Scholar
  13. 13.
    S. Satyavathi et al. (to be communicated) (1995).Google Scholar
  14. 14.
    P. Sumana Prabhu, M.S. Ramachandra Rao and U.V. Varadaraju; Phy.Rev.B 50 (1994) 6929.CrossRefGoogle Scholar
  15. 15.
    N.F. Mott, Metal Insulator Transitions (Taylor and Francis, London, 1974), and references thereinGoogle Scholar
  16. 15a.
    I.G. Austin and N.F. Mott, Adv.Phys. 18 (1969) 41.CrossRefGoogle Scholar
  17. 16.
    K. Nanda Kishore, S. Satyavathi, M. Muralidhar, V. Hari Babu, O. Pena, M. Sergent and F. Beneire Phys.Stat.Solidi (a) 143, 101 (1994)CrossRefGoogle Scholar
  18. 17.
    J.B. Mandai, S. Keshri, P. Mandai, A. Poddar, A.N. Das and B. Ghosh; Phys.Rev. B 46 (1992) 11840.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • S. Satyavathi
    • 1
  • K. Nanda Kishore
    • 1
  • M. Muralidhar
    • 1
  • O. Pena
    • 2
  • V. Hari Babu
    • 1
  1. 1.Dept. of PhysicsOsmania UniversityHyderabadIndia
  2. 2.Chimie du Solide et Inorganique Moleculaire, URA CNRS 1495Univ. de Rennes IRennes CedexFrance

Personalised recommendations