New Er-Based Materials for Active Magnetic Refrigeration Below 20K

  • V. K. Pecharsky
  • K. A. GschneidnerJr.
  • C. B. Zimm
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)


High magnetic field (0 to 9.85 T) low temperature (1.2 to 30 K) heat capacity of five as-cast alloys: Er3AlC, Er3AlC0.5, Er3AlC0.25, Er3AlC0.1 and ErAgGa revealed that four of them can be used as efficient active magnetic regenerators for magnetic refrigerators at low temperature. Only one of the carbide phases (Er3AlC) is a single phase material, while the remaining three alloys are found to be two-phase equilibrium mixtures of Er3AlC and Er2Al. Er3AlC probably orders antiferromagnetically, and ErAgGa forms a low temperature (∼3 to ∼5 K) non-magnetic atom disorder (NMAD) spin glass system. All alloys (except Er3AlC0.1) show a sufficiently high magnetocaloric effect in a range 4 to 20 K with a maximum adiabatic temperature rise of ∼12.5 K at ∼5 K for Er3AlC for magnetic field change from 0 to 7.5 T. In the carbides series, the maximum adiabatic temperature change gradually decreases from ∼12.5 K to ∼6 K and the magnetocaloric peak temperature increases from ∼5 K to ∼9 K with decreasing carbon content. The adiabatic temperature rise for the ErAgGa is ∼10% higher and covers a wider range of useful temperatures than that of the ∼50: 50 mixture of Er3AlC and Er2Al (Er3AlC0.5).


Spin Glass Magnetocaloric Effect Magnetic Entropy Change Zero Magnetic Field Magnetic Refrigeration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.A. Gschneidner, Jr., H. Takeya, J.O. Moorman, V.K. Pecharsky, S.K. Malik, and C.B. Zimm, New magnetic refrigeration materials for the liquefaction of hydrogen, in: Adv. Cryogenic Eng., 39: 1457 (1994).CrossRefGoogle Scholar
  2. 2.
    K.A. Gschneidner, Jr., H. Takeya, J.O. Moorman, and V.K. Pecharsky, (Dy0.5Er0.5)Al2: A large magnetocaloric effect for low-temperature magnetic refrigeration, Appl. Phys. Lett., 64: 253 (1994).CrossRefGoogle Scholar
  3. 3.
    K.H.J. Bushchov and J.H.N. van Vucht, Systematic arrangement of the binary rare-earth-aluminum systems, Philips Res. Repts., 22: 233 (1967).Google Scholar
  4. 4.
    H. Haschke, H. Novotny, and F. Benesovsky, Neue Perowskitcarbide, Monatsh. Chem., 98: 273 (1967).CrossRefGoogle Scholar
  5. 5.
    Y. Tokai, A. Takahashi, M. Sahashi, and T. Hashimoto, Specific heat design and proposal of a new cubic type magnetic material for a regenerator matrix, in: Proc. of the 7th Intern. Cryocooler Conf., Santa Fe, NM, 17–19 November 1992, Phillips Lab., Air Force Mat. Command, Kirtland Air Force Base, NM (1993), p.484.Google Scholar
  6. 6.
    A.E. Dwight, Ternary compounds in RE(Au, Ga)2 and RE(Ag, Ga)2 alloys, in: “The Rare Earths in Modern Science and Technology. Rare Earth Research Conference.”, Vol.3, G.J. McCarthy, H.B. Silber, and J.J. Rhyne, eds., Plenum Press, NY (1982), p.359.CrossRefGoogle Scholar
  7. 7.
    L.R. Sill and E.D. Esau, Magnetic characteristics of RAgGa compounds, J. Appl. Phys., 55: 1844 (1984).CrossRefGoogle Scholar
  8. 8.
    K. Ikeda, K.A. Gschneidner, Jr., B.J. Beaudry, and U. Atzmony, Heat capacity in superconducting and normal-state LaSx (1.333 ≤ x ≤ 1.500) compounds, Phys. Rev., B25: 4604 (1982).CrossRefGoogle Scholar
  9. 9.
    L.G. Akselrud, Yu.N. Grin, P.Yu. Zavalij, V.K. Pecharsky, and V.S. Fundamensky, CSD — universal program for single crystal and/or powder data treatment, in: “Twelfth European Crystallographic Meeting. Collected Abstracts”, Vol.3, USSR Academy of Sciences, Moscow (1989), p. 155.Google Scholar
  10. 10.
    L.R. Sill and R.R. Riggers, Magnetic characteristics of R2Al and R2Au compounds, J. Appl. Phys., 49: 1500 (1978).CrossRefGoogle Scholar
  11. 11.
    M. Földeàki, R. Chanine, and T.K. Bose, Magnetic measurements: A powerful tool in magnetic refrigerator design, J. Appl. Phys., 77: 3528 (1995).CrossRefGoogle Scholar
  12. 12.
    A.J. DeGregoria, Modeling the active magnetic regenerator, in: Adv. Cryogenic Eng., 37B: 867 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • V. K. Pecharsky
    • 1
  • K. A. GschneidnerJr.
    • 1
  • C. B. Zimm
    • 2
  1. 1.Ames Laboratory and Department of Materials Science and EngineeringIowa State UniversityAmesUSA
  2. 2.Astronautics Technology CenterAstronautics Corporation of AmericaMadisonUSA

Personalised recommendations