Comparison of the Magnetocaloric Effect Derived from Heat Capacity, Direct, and Magnetization Measurements

  • V. K. Pecharsky
  • K. A. GschneidnerJr.
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)


A theoretical and experimental evaluation of the experimental method for determining the magnetocaloric properties of magnetic materials show that the magnetic field heat capacity data can provide a reliable results, which may be used for a detailed analysis of the thermodynamic cycle efficiency. In addition the magnetocaloric effect and the magnetic field induced magnetic entropy change determined from the magnetic field dependence of the heat capacity has an accuracy that is equal to or better than that obtained from other methods — direct and magnetization measurements.


Magnetic Field Heat Capacity Curie Point Total Entropy Magnetocaloric Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.M. Benford and G.V. Brown, J. Appl. Phys., 52: 2110 (1981).CrossRefGoogle Scholar
  2. 2.
    S.A. Nikitin, A.S. Andreyenko, A.M. Tishin, A.M. Arkharov, and A.A. Zherdev, Phys. Met. Metall., 59: 104 (1985).Google Scholar
  3. 3.
    C.B. Zimm, E.M. Ludeman, M.C. Severson, and T.A. Henning, Adv. Cryog. Eng., 37B: 883 (1992).CrossRefGoogle Scholar
  4. 4.
    M. Földeàki, R. Chanine, and T.K. Bose, J. Appl. Phys., 11: 3528 (1995).CrossRefGoogle Scholar
  5. 5.
    R.D. Shull, R.D. McMichael, J.J. Ritter, L.J. Swartzendruber, and L.H. Bennet, in: Proc. of the 7th Intern. Cryocooler Conf., Santa Fe, NM, 17–19 November 1992, Phillips Lab., Air Force Material Command, Kirtland Air Force Base, NM (1993), p. 1133.Google Scholar
  6. 6.
    K.A. Gschneidner, Jr., F.L. Takeya, J.O. Moorman, and V.K. Pecharsky, Appl. Phys. Lett., 64: 253 (1994).CrossRefGoogle Scholar
  7. 7.
    V.K. Pecharsky, J.O. Moorman, and K.A. Gschneidner, to be published. Google Scholar
  8. 8.
    T. Hashimoto, K. Matsumoto, T. Kurihara, T. Numazawa, A. Tomokiyo, H. Yayama, T. Goto, S. Todo, and M. Sahashi, Adv. Cryog. Eng., 32: 279 (1986).CrossRefGoogle Scholar
  9. 9.
    S.M. Benford, J. Appl. Phys., 50: 1868 (1979).CrossRefGoogle Scholar
  10. 10.
    A.S. Andreenko, K.P. Belov, S.A. Nikitin, and A.M. Tishin, Sov. Phys. Usp., 32: 649 (1989).CrossRefGoogle Scholar
  11. 11.
    D. Fort, V.K. Pecharsky, and K.A. Gschneidner, Jr., J. Alloys and Compd., in press.Google Scholar
  12. 12.
    V.K. Pecharsky, K.A. Gschneidner, Jr., and D. Fort, Phys. Rev., 47B: 5063 (1993).CrossRefGoogle Scholar
  13. 13.
    T. Hashimoto, T. Numusawa, M. Shino, and T. Okada, Cryogenics, 21: 647 (1981)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • V. K. Pecharsky
    • 1
  • K. A. GschneidnerJr.
    • 1
  1. 1.Ames Laboratory and Department of Materials Science and EngineeringIowa State UniversityAmesUSA

Personalised recommendations