Crack Tip Shielding in 2090 Al-Li Alloy

  • Arie Bussiba
  • Moshe Kupiec
  • Yosef Katz
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

Thermal dependency of fracture toughness as a function of normal cracking and cold pre-stressing (CPS) conditions at the 173 K is studied in 2090 Al-Li alloy. It was found that fracture toughness increases with decreasing temperature for L-T orientation. This behavior is attributed to the increase of delamination cracking associated with transition from localized to homogeneous plastic deformation. CPS effects improve fracture resistance at temperature above 200 K. This behavior relates mainly to the influences of delamination cracking and residual stresses. A simple model is suggested in order to evaluate the contribution of these two sources to the global toughness value.

Keywords

Residual Stress Fracture Toughness Stable Crack Growth Acoustic Emission Technique Plain Strain Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    H.E. Deve and A.G. Evans, Acta. Metall., 39, 6:1171 (1991).CrossRefGoogle Scholar
  2. (2).
    Y. Katz, A. Bussiba and H. Mathias, Advances in Cryogenic Engineering Materials, Reed and Clark, eds., 32:179(1986).Google Scholar
  3. (3).
    Y. Katz, A. Bussiba and H. Mathias, in: “Fatigue at Low Temperatures, ASTM STP 857”, R. I. Stephens, ed., p. 191, American Society for Testing and Materials, Philadelphia (1985).CrossRefGoogle Scholar
  4. (4).
    Y. Katz Unpublished results.Google Scholar
  5. (5).
    R.C. Dorward, in: “Advances in Fracture Research ICF7”, K. Salama, K. Ravi-Chandar, D. M R. Taplin and P. Rama Rao, eds., vol. 4, pp. 2413, Pergamon Press, Oxford (1989).Google Scholar
  6. (6).
    P. T. Purtscher, J. D. McColsky and E. S. Drexler, in: “Chevron-Notch Fracture Test Experience: Metals and Non- Metals, ASTM 1172”, K.R. Brown and F.I. Baratta, eds., p. 110, American Society for Testing and Materials, Philadelphia, (1992).CrossRefGoogle Scholar
  7. (7).
    K.T. Venkateswara Rao and R.O. Ritchie, Acta Metall. 38, 1:2309 (1990).Google Scholar
  8. (8).
    H. Cai, J. T. Evans and D. Boomer, Eng. Fract. Mech. 42, 4:589 (1992).CrossRefGoogle Scholar
  9. (9).
    Y. B. Xu, L. Wang, Y. Zhang, Z. G. Wang and Q. Z. Hu, Metall. Trans. A, Vol.22A, p. 723 (1991).CrossRefGoogle Scholar
  10. (10).
    Y. Katz, A. Bussiba and W.W. Gerberich, in: “Fatigue 90”, H. Kitagawa and T. Tanaka, eds., vol. 3, p. 1499, Materials and Component Engineering Publications Ltd., Edgbaston, Birmingham, UK (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Arie Bussiba
    • 1
  • Moshe Kupiec
    • 1
  • Yosef Katz
    • 1
  1. 1.Nuclear Research Centre-NegevBeer ShevaIsrael

Personalised recommendations