Irradiation Effects on Interlaminar Shear Strength of GFRP at Low Temperature

  • Y. Tsukazaki
  • S. Nishijima
  • T. Nishiura
  • S. Ueno
  • Y. Ohtani
  • F. Sawa
  • A. Iwamoto
  • H. Miyamoto
  • T. Okada
  • K. Asano
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

The degradation of interlaminar shear strength (ILSS) of GFRPs has been evaluated after 77K electron and 20K reactor irradiation. The GFRPs used in this work were prepared using several matrix resins. Optical microscopic observations of the fracture surfaces were carried out to determine the degradation behavior of ILSS. The fiber exposed area of fracture (interfacial failure) surface was found to be larger with higher absorbed dose. It suggested that the degradation of ILSS was induced by the interface failure between fiber and matrix. The matrix resin was also found to be degraded along with the interface.

Keywords

Liquid Nitrogen Temperature Matrix Resin Bright Area Reactor Irradiation Glass Fiber Reinforce Plastic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. R. Coltman, Jr., C. E. Klabunde, “The strength of G- 10CR and G-11CR epoxies after irradiation at 5K by gamma rays,” J. Nucl. Mater. 113: 268 (1983)CrossRefGoogle Scholar
  2. 2.
    A. Udagawa, M. Hagiwara, S. Kawanishi, T. Sasuga, S. Egusa, O. Hashimoto, Y. Yamamoto, K. Sonoda, T. Ono, D. Nagata, H. Tomita, M. Takehisa, “Studies on radiation resistance of fiber reinforced plastic composites featured by easiness of manufacturing-I Degradation behavior under electron irradiation at room temperature,” JAERI-M 85–220, (1985)Google Scholar
  3. 3.
    A. Udagawa, S. Egusa, T. Sasuga, T. Seguchi, T. Ono, K. Kawakami, M. Outsuka, Y. Yamamoto, O. Hashimoto, K. Sonoda, H. Tomita, and N. Tamura, “Studies on radiation resistance of fiber reinforced Plastic composites featured by easiness of manufacturing-II Mechanical properties at low temperature and at room temperature.” JAERI-M 88–047, (1988)Google Scholar
  4. 4.
    N. Takeda, S. Kawanishi, A. Udagawa, M. Hagiwara, “Electron irradiation effects on interlaminar shear strength of glass or carbon cloth reinforced epoxy composites,” J. Mater. Sci. 20: 3003 (1983)CrossRefGoogle Scholar
  5. 5.
    S. Nishijima, S. Ueno, Y. Ohtani and T. Okada, “Interface and matrix failure of composite materials at cryogenic temperature,” Cryogenics 32: 18 (1992)CrossRefGoogle Scholar
  6. 6.
    S. Nishijima, K. Nojima, K. Asano, A. Nakahira, T. Okada and K. Niihara, “Glass fiber reinforced plastics for cryogenic use: improvement of thermal contraction and elastic modulus in thickness direction,” Adv. Cryo. Eng. (Mater.) 40 (1994) p. 1051Google Scholar
  7. 7.
    S. Nishijima, T. Nishiura and T. Okada, “Irradiation effects on insulator for superconducting magnet,” KURRI-TR-379: 29 (1993)Google Scholar
  8. 8.
    H. Becker, “Problems of cryogenic interlaminar shear strength testing.” Adv. Cryo. Eng. (Mater.) 30 (1983) p.33Google Scholar
  9. 9.
    Y. Tsukazaki, S. Nishijima, K. Matsusita, T. Nishiura, T. Okada and K. Asano, “Interlaminar shear strength of high-density laminates,” Proc. ICMC Topical Meeting 18 (1994)Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Y. Tsukazaki
    • 1
  • S. Nishijima
    • 1
  • T. Nishiura
    • 1
  • S. Ueno
    • 1
  • Y. Ohtani
    • 1
  • F. Sawa
    • 1
  • A. Iwamoto
    • 1
  • H. Miyamoto
    • 1
  • T. Okada
    • 1
  • K. Asano
    • 2
  1. 1.ISIROsaka Univ.Ibaraki, Osaka 567Japan
  2. 2.Arisawa Mfg. Co., Ltd.Joetsu, Niigata 943Japan

Personalised recommendations