Tantalum-Niobium Alloy Diffusion Barriers for Superconducting Nb3Sn Wires in Fusion Applications

  • J. C. McKinnell
  • P. M. O’Larey
  • P. D. Jablonski
  • M. B. Siddall
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

Fusion magnets using cable in conduit conductors require Nb3Sn wires having high residual resistivity ratio (RRR) to ensure adequate stability. The diffusion barrier in Nb3Sn composite wire is one of the key factors controlling the RRR of the wire. Ta40wt.% Nb diffusion barriers have been investigated for application to fusion type wires. Ta40wt.% Nb diffusion barriers exhibit excellent fabricability in the wire drawing process and yield residual resistivity ratio values in excess of 300 (bare wire surface) and L50 (Cr plated wire surface). The hysteresis loss due to the A15 formed as a layer on the Ta40wt.% Nb diffusion barrier is minimal. Comparisons of Ta40wt.% Nb diffusion barriers to barriers made of V, Nb and Ta are also performed.

Keywords

Diffusion Barrier Hysteresis Loss Composite Wire Minimum Average Maximum Wire Drawing Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Zhou, W. Marancik, and S. Hong, Efflectiveness of vanadium as a diffusion barrier for Nb3Sn, Proccedings of the 7th U.S.-Japan workshop Fukuoka, Japan (1991).Google Scholar
  2. 2.
    J.C. McKinnell, et al., Improved superconducting critical current density in modified jolly roll Nb3Sn by the application of niobium (Nb) diffusion barriers, IEEE Trans. Applied Superconductivity 5:1768 (1995).CrossRefGoogle Scholar
  3. 3.
    W.K. McDonald, Composite construction process and superconductor produced thereby, U.S. Patent 4,262,412 (1981).Google Scholar
  4. 4.
    W.K. McDonald, Expanded metal containing wires and filaments, U.S. Patent 4,114,428 (1983).Google Scholar
  5. 5.
    D.B. Smathers et al., Status of the superconductor development program at Teledyne Wall Chang, Adv. Cryo. Eng. 34:515 (1988).Google Scholar
  6. 6.
    D.B. Smathers, The modified jelly roll process for manufacturing multifilament niobium-tin composite superconductors. in “Proceedings of International Symposium on Tantalum and Niobium,” H.J. Heinrich ed., Tautalum Niobium International Study Center, Brussels (1989), p. 707Google Scholar
  7. 7.
    D.H. Smathers, Alloy core modification for tin core superconducting materials, P.S. Patent 4,973,527 (1990).Google Scholar
  8. 8.
    M.B. Siddall and D.B. Smathers, Method for critical current testing: software corrections, IEEE Trans. Mag. 25:1823 (1989).CrossRefGoogle Scholar
  9. 9.
    T.H. Courtney, C.W. Pearsall, and J. Wulff, Efflect of processing history on the superconducting properties and long-range order of Ta3Sn, Jour. of Appl. Phys. 36:3256 (1965).CrossRefGoogle Scholar
  10. 10.
    E.M. Savitskii, V.V. Baron, Yu.V. Efimov, M.I. Bychkova, and L.F. Myzenkova, “Superconducting Materials,” Plenum Press, New York (1973).CrossRefGoogle Scholar
  11. 11.
    M. Suenaga, et al., Superconducting properties of (Nb, Ta)3Sn wires fabricated by the bronze process. Adv. Cryo. Eng. 26:442(1980).CrossRefGoogle Scholar
  12. 12.
    M. Suenaga and K.M. Ralls, Some superconducting properties of Ti-Nb-Ta Ternary Alloys, Jour. of Appl. Phys. 40:4457 (1969).CrossRefGoogle Scholar
  13. 13.
    D.B. Stnathers, et. al., Characterization of vanadium diffusion barriers in Nb-Sn composite wires, IEEE Trans. Mag 23:1347 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • J. C. McKinnell
    • 1
  • P. M. O’Larey
    • 1
  • P. D. Jablonski
    • 1
  • M. B. Siddall
    • 1
  1. 1.Teledyne Wah ChangAlbanyUSA

Personalised recommendations