Improvement of Critical Current Density of Bronze Processed Nb3Sn Superconducting Wire

  • T. Miyazaki
  • Y. Fukumoto
  • N. Matsukura
  • T. Miyatake
  • M. Shimada
  • N. Kobayashi
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

Effects of tantalum addition to niobium filaments and tin contents in bronze matrix on the critical current density (Jc) of Nb3Sn superconducting wires manufactured by the bronze process were investigated in order to improve the Jc in the high magnetic fields. In the results using the bronze composition of Cu-13wt.%Sn-0.3wt.%Ti, the Jc shows a peak for 1 wt.% of tantalum content in the niobium filament. On the other hand, Jc of samples with Cu-14wt.%Sn-0.3wt.%Ti is almost 1.7 times higher than that with Cu-13wt.%Sn-0.3wt.%Ti. From these findings, we manufactured a multifilamentary prototype (Nb,Ti,Ta)3Sn conductor made of Nb-1.0wt.%Ta and Cu-14wt.%Sn-0.3wt.%Ti. The non Cu Jc of the conductor was 701 A/mm2 at 12 T and 51 A/mm2 at 21 T for the heat treatment temperature of 650 °C.

Keywords

Critical Current Density High Magnetic Field High Heat Treatment Temperature Hybrid Magnet Test Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. T. Wang, R. Wahrer, C. J. Chen, T. S. Tenforde, R. M. Scanlan, J. Ekin and S. Bray, “Evaluation of Nb3Sn superconductors for using in a 23.5T NMR magnet.”, IEEE Trans. Mag., 30, 2344 (1994).CrossRefGoogle Scholar
  2. 2.
    S. Pourrahimi, M. J. Leupold, V. Stejskal, J. E. C. Williams, T. S. Tenforde, J. Ekin, S. Bray and S. T. Wang, “Conductors for a 1GHz superconducting magnet.”, IEEE Trans. Mag, 30, 2354 (1994).Google Scholar
  3. 3.
    M. Suenaga, K. Aihara, K. Kaiho and T. S. Luhman, “Superconducting Properties of (Nb,Ta)3Sn Wires Fabricated by the Bronze Process.”, Advances in Cryogenic Engineering Material, 26, 442 (1979).Google Scholar
  4. 4.
    K. Tachikawa, H. Sekine and Y. Iijima, “Composite-Processed Nb3Sn with titanium addition to the matrix.”, J. Appl. Phys., 53, 5354 (1982).CrossRefGoogle Scholar
  5. 5.
    V. Ya. Sverdlov, M. A. Tikhonovsky, G. F. Tikhinsky, A. A. Kondratov, T. Yu. Rudycheva, E. Yu. Klimenko and S. I. Novikov, “Critical Currents of Multifilamentary Nb3Sn Superconductors Manufactured by Using Cu-16%Sn and Cu-13%Sn-l%Ti Bronze.”, Proc. 7th Int. Workshop Crit. Curr. Supercond. 1994., 585 (1994).Google Scholar
  6. 6.
    G. Iwaki, S. Sakai, K. Kamata, K. Sasaki, S. Inaba, H. Moriai and K. Yoshida, “Development of Bronze-Processed (Nb,Ti) 3Sn Superconducting Wires for Center Solenoid Model Coil of ITER.”, IEEE Trans. Appl. Supercond., 3, 998 (1993).CrossRefGoogle Scholar
  7. 7.
    G. Rupp, K. Wohlleben and E. Springer, “Filament-size dependent critical current of multifilamentary Nb3Sn conductor.”, IEEE Trans. Mag. 17, 1622 (1981).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • T. Miyazaki
    • 1
  • Y. Fukumoto
    • 1
  • N. Matsukura
    • 1
  • T. Miyatake
    • 1
  • M. Shimada
    • 1
  • N. Kobayashi
    • 2
  1. 1.Electronics Research LaboratoryKobe Steel Ltd.Nishi-ku, KobeJapan
  2. 2.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations