Quantity and Quality of the Nb3Sn Intermetallics Formed by the Internal Tin Process

  • C. Verwaerde
  • R. Taillard
  • C. E. Bruzek
  • Hoang-Gia-Ky
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)


This paper considers rather usual methods for investigating the microstructure of the Nb3Sn superconducting phase. These techniques deal with the quality and volume fraction of the Al 5 compound. Microhardness testing show very suitable in order to monotor a fabrication process. The metallurgical effects of each step of a conventional HT schedule are also studied with various designs of composites in an attempt of optimization.


Effect Ofthe Filament Diameter Metallurgical Effect Superconducting Behavior Cryogenic Engineer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Okuda, M. Suenaga, and R.L. Sabatini, “Influence of metallurgical on superconducting current densities in “bronze-processed” Nb3Sn multifilamentary wires”, J. Appl. Phys. 54: 289 (1983).CrossRefGoogle Scholar
  2. 2.
    D.R. Dietderich, W.V. Hassenzahl, and J.W. Morris Jr., “The Relationship between critical current and microstructure of internal tin wire”, in: “Advances in Cryogenic Engineering, Materials” 32 (1985), P. 881.Google Scholar
  3. 3.
    K.R. Marken, J.J. Kwon, P.L. Lee, and D.C. Larbalestier, “Characterization studies of a fully reacted high bronze niobium ration filamentary Nb3Sn composite”, in: “Advances in Cryogenic Engineering, Materials” 32 (1985), P. 967.Google Scholar
  4. 4.
    D. Dew-Hughes “Is Jc in Nb3Sn limited by grain-boundary flux-shear?”, IEEE Trans Mag mag-23: 1172 (1987).CrossRefGoogle Scholar
  5. 5.
    W. Schauer, and W. Schelb,“Improvement of Nb3Sn high field critical current by two stages reaction”, IEEE Trans. Mag. mag-17: 374 (1981).CrossRefGoogle Scholar
  6. 6.
    K. Osamura, “Composite Superconducting”, Dekker Publication, New York (1993), p 85.Google Scholar
  7. 7.
    L.M. Di, P.I. Loef, and H. Bakker, “Atomic disorder in intermetallic compound by mechanical attrition”, Mat. Sci. Eng. A134: 1323 (1991).CrossRefGoogle Scholar
  8. 8.
    K. Togano, and K. Tachikawa, “Textures in diffusion-processed superconducting Nb3Sn and V3Ga layers”, J Appl Phys 50(5): 3495 (1979).CrossRefGoogle Scholar
  9. 9.
    N. Saunders and A.P. Miodownik, Bull. Alloy Phase Diag.: 11 (1990), p. 278.CrossRefGoogle Scholar
  10. 10.
    R. Taillard, and C. Verwaerde “Phases transformations during the manufacturing process of Nb3Sn superconducting composites”, Proceeding. Euromat 95, VENISE (1995), p.471.Google Scholar
  11. 11.
    R. Flückiger, W. Goldacker, and R. Isernhagen, “Characterization of Bulk and Multifilamentary Nb3Sn and Nb3Al by Diffractometric and Resistive Measurements”, in: “Advances in Cryogenic Engineering, Materials” 32 (1985), P. 925.Google Scholar
  12. 12.
    R.M. Scalan, W. A. Frietz, and E.F. Koch, “Flux pinning centers in superconducting Nb3Sn”, J. Appl. Phys. 46: 2244 (1975).CrossRefGoogle Scholar
  13. 13.
    A.W. West, and R.D. Rawling, “transmission electron microscopy investigation of filamentary superconducting composites”, J. Mat. Sci. 12: 1862 (1977).CrossRefGoogle Scholar
  14. 14.
    W. Schelb, “Electron microscopy examination of multifilamentary bronze processed”, J. Mat. Sci. 16: 2575 (1981).CrossRefGoogle Scholar
  15. 15.
    J.R. Cave and C.A.F. Weir, IEEE Trans. Mag. mag-19: 1120 (1983).CrossRefGoogle Scholar
  16. 16.
    E.R. Wallach, and J.E. Evetts, “The Development in multifilamentary bronze route A 15 composites”, in: “Advances in Cryogenic Engineering, Materials” 32 (1985), P.911.Google Scholar
  17. 17.
    P. Gruzin, Yu Bychkov, J. Evstyukhina, V. Kruglov, and L. Alekseev, “Struktura i Svoistva Sverkhprovodyashchikh Materialov”, Moskova (1974), p 29.Google Scholar
  18. 18.
    De Cox and Ar Sweedler, “Comments on Móssbauer effect étudies on 2 Mev proton-irradiated Nb3Sn”, Phys. Rev. B 19: 1664 (1979.CrossRefGoogle Scholar
  19. 19.
    H.H. Farell, G.H. Gilmer and M. Suenaga, “Grain boundary diffusion and growth of intermetallic layers”, J. Appl. Phys A5: 4025 (1974).CrossRefGoogle Scholar
  20. 20.
    B.V. Reddi, V. Raghavan, S. Ray, and A.V. Narlikar,“Growth kinetics of monofilamentary Nb3Sn and V3Ga synthesized by solid-state diffusion”, J. Mat. Sci. 18: 1165 (1983).CrossRefGoogle Scholar
  21. 21.
    A. M. Gusak, and M.V. Yarmolenko, “A simple way describing the diffusion phase growth cylindrical and spheridrical samples”, J. Appl. Phys. 73(10): 4881 (1993).CrossRefGoogle Scholar
  22. 22.
    P.K. Ghosh, S. Ray, and R.C. Agarwal, “Reaction annaeling of copper-tin-copper-niobium composite”, J. Appl. Mat. Sci. Letters 3: 370 (1984).CrossRefGoogle Scholar
  23. 23.
    R. Roberge, H. Lehuy, and S. Foner, “X-ray observations of the low temperature phase transformation of Nb3Sn. E fleets of added elements ans strain”, Phys. B 108: 1245 (1981).CrossRefGoogle Scholar
  24. 24.
    C.E. Bruzek, P. Suiten, D Mocaer, S. Peltier et al., “Development of Superconducting wires for Fusion Application”, this conference.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • C. Verwaerde
    • 1
  • R. Taillard
    • 1
  • C. E. Bruzek
    • 2
  • Hoang-Gia-Ky
    • 2
  1. 1.Physical Metallurgy Laboratory, URA CNRS 234University of Lille IVilleneuve d’AscqFrance
  2. 2.GEC Alsthom - IntermagneticsBelfortFrance

Personalised recommendations