Interlaminar Shear and Flexural Strength of Fiber Reinforced Plastics at 77 K After Room and Low-Temperature Reactor Irradiation

  • S. Spießberger
  • K. Humer
  • E. K. Tschegg
  • H. W. Weber
  • H. Gerstenberg
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)


The mechanical properties of several glass fiber reinforced plastics (FRPs) were investigated prior to and following neutron and gamma irradiation using the short beam shear (ASTM D2344) and the three point bending test (ASTM D790). The irradiations were carried out at room temperature and at low temperature (5 K) with different reactor spectra up to a fast neutron fluence of 5×1022 m-2 (E>0.1MeV). The samples were measured at 77 K, those subjected to low temperature irradiation were measured before and after an annealing cycle to room temperature. Special attention was paid to the influence of the boron (n, a)-reaction on the interlaminar shear strength, which occurs in E-glass, but not in boron free S- and T-glass reinforcements.


Ultimate Tensile Strength Cryogenic Temperature Interlaminar Shear Strength ASTM D790 Standard Shear Strength Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wilson, D.W. “An Overview of Test Methods used for Shear Characterization of advanced Composite Materials”, Adv Cryog Eng 36:793 (1990)Google Scholar
  2. 2.
    Käsen, M.B. “Current Status of Interlaminar Shear Strength Testing of Composite Materials at cryogenic Temperatures”, Adv Cryog Eng 36:787 (1990)Google Scholar
  3. 3.
    Becker, H. “Problems of cryogenic Interlaminar Shear Strength Testing”, Adv Cryog Eng 36:827 (1990)Google Scholar
  4. 4.
    Nishijima, S., Okada, T., Hirokawa, T., Yasuda, J., Iwasaki, Y. “Radiation Damage of organic Composite Material for Fusion Magnet”, Cryogenics 31:273 (1991)CrossRefGoogle Scholar
  5. 5.
    Tsai, L.W. and Zhang, S.Y.,“Prediction of mixed Mode Cracking Direction in random, short Fibre Composite Materials”, Comp Sci Tech 31: 97 (1988)CrossRefGoogle Scholar
  6. 6.
    Egusa, S. “Anisotropy of Radiation induced Degradation in mechanical Properties of fabric-reinforced Polymer Matrix Composites”, J Mat Sci 25:1863 (1990)CrossRefGoogle Scholar
  7. 7.
    Garg, A.C.,“Intralaminar and Interlaminar Fracture in graphite/epoxy Laminates”, Eng Frac Mech 23:719(1986)CrossRefGoogle Scholar
  8. 8.
    Hashemi, S., Kinloch, A. J., and Williams, J.G. “The Aanalysis of interlaminar Fracture in uniaxial Fibre-polymer Composites”, Proc R Soc London A427:173 (1990)CrossRefGoogle Scholar
  9. 9.
    Poehlchen, R., Salpietro, R., Vassiliadis, M., Rauch, J., Koenig, F., Claudet, G., Chabert, J., Marangos, J., Kraehling, G., Soell, M. “The Mechanical Strength of irradiated electric Insulation of superconducting Magnets”, Adv Cryog Eng 36:893 (1990)Google Scholar
  10. 10.
    Bruzzone, P., Nylund, K. and Muster, W.J. “Electrical Insulation System for superconducting Magnets according to the Wind and React Technique”, Adv Cryog Eng 36:999 (1990)Google Scholar
  11. 11.
    Tschegg, E.K., Humer, K., Weber, H.W. “Shear Fracture Tests (mode II) on Fiber Reinforced Plastics at Room and cryogenic Temperatures”, Adv Cryog Eng 38:355 (1992)Google Scholar
  12. 12.
    Humer, K., Weber, H.W., Tschegg, E.K., Egusa, S., Birtcher, R.C., Gerstenberg, H. “ Tensile and Shear Fracture Behavior of Fiber Reinforced Plastics at 77 K irradiated by varios Radiation Sources”, Adv Cryog Eng 40:1015 (1994)Google Scholar
  13. 13.
    Humer, K., Weber, H.W., Tschegg, E.K. “Radiation Effects on Insulators for superconducting Fusion Magnets”, Cryogenics, in pressGoogle Scholar
  14. 14.
    Insulators for fusion applictions, IAEA-TECDOC-417, IAEI, Vienna (1987)Google Scholar
  15. 15.
    Greenwood, L.R. and Smither, R.K. “SPECTER: Neutron Damage Calculations for Material Irradiation”, ANL/FPP/TM-197 (1985)CrossRefGoogle Scholar
  16. 16.
    Käsen, M.B. “Strain-controlled torsional Test Method for screening the Performance of Composite Materials at cryogenic Temperatures”, J Mat Sci 23:830 (1988)CrossRefGoogle Scholar
  17. 17.
    Humer, K., Ph. D. Thesis, TU Wien (1992)Google Scholar
  18. 17.
    Humer, K., Ph. D. Thesis, TU Wien (1992)Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • S. Spießberger
    • 1
  • K. Humer
    • 1
  • E. K. Tschegg
    • 2
  • H. W. Weber
    • 1
  • H. Gerstenberg
    • 3
  1. 1.Atominstitut der Österreichischen UniversitätenWienAustria
  2. 2.Institut für Angewandte und Technische PhysikTU WienWienAustria
  3. 3.Fakultät für Physik, E 21TU MünchenGarchingGermany

Personalised recommendations