Application of the Supercon APC Process to Nb-Ti-Ta Ternary Conductors

  • M. K. Rudziak
  • J. M. Seuntjens
  • T. Wong
  • J. Wong
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)


Supercon, Inc. has pursued the development of Nb-Ti-Ta ternary conductors fabricated via their unique APC (artificial pinning center) route. The process has been successfully utilized in the fabrication of NbTi conductors. Pure Nb and pure Ti sheets are alternately layered to form a Nb/Ti composite monofilament. Subsequent processing includes a heating step in which a controlled amount of diffusion occurs, forming superconducting NbTi alloy at the sheet interfaces. The result is a superconducting/normal structure that provides excellent Jc (critical current density) performance when reduced to final size.

The success of the Supercon APC process for binary Nb/Ti has led to investigations of ternary APC Nb-Ti-Ta composites. Ternary materials offer the promise of enhanced Hc2 (upper critical field) performance at low temperature (~1.8K) as compared to standard binary materials. Such performance enhancement is desirable for high energy physics applications, particularly in machines such as the proposed Large Hadron Collider (LHC). The Supercon process may afford a comparatively inexpensive, convenient way to manufacture ternary conductor. We will give an overview of our development efforts in this area and our present understanding of the key process parameters.


Large Hadron Collider Layer Quality Unit Layer Binary Material Ternary Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Suenaga and K. M. Ralls, Some Superconducting Properties of Ti-Nb-Ta Ternary Alloys, Journ. Appl. Phys. 40(11): 4457 (1969).CrossRefGoogle Scholar
  2. 2.
    D. G. Hawksworth and D. C. Larbalestier, Further Investigations of The Upper Critical Field and the High Field Critical Current Density in Nb-Ti and Its Alloys, IEEE Trans. on Magn. 17(1): 49 (1981).CrossRefGoogle Scholar
  3. 3.
    E. Gregory, T. S. Kreilick, F. S. von Goeler, and J. Wong, Preliminary results on properties of ductile superconducting alloys for operation to 10 Tesla and above, in: “Proceedings of the Twelfth International Cryogenic Engineering Conference”, R. J. Scurlock and C. A. Bailey, eds., Butterworths, Guildford, Surrey, U.K (1988) p.874.Google Scholar
  4. 4.
    H. Liu, E. Gregory, N. D. Rizzo, J. D. McCambridge, X. S. Ling, and D. E. Prober, Experimental Results on Nb25wt.%Ta45wt.%Ti Superconducting Wire, IEEE Trans. on Appl. Supercond. 3(1): 1350 (1993).CrossRefGoogle Scholar
  5. 5.
    G. L. Dorofejev, E. Y. Klimenko, S. V. Frolov, E. V. Nikulenkov, E. I. Plashkin, N. I. Salunin, and V. Y. Filkin, Current-carrying capacity of superconductors with artificial pinning centers, in: “Proceedings of the Ninth International Conference on Magnet Technology”, C. Marinucci and P. Weymouth, eds., Swiss Institute for Nuclear Research, Zurich (1985), p. 564.Google Scholar
  6. 6.
    L. R. Motowidlo, H. C. Kanithi, and B. A. Zeitlin, NbTi superconductors with artificial pinning centers, in: “Advances in Cryogenic Engineering (Materials)”, vol. 36A, R. P. Reed and F. R. Fickett, eds., Plenum Press, New York (1990) p. 311.Google Scholar
  7. 7.
    J. M. Seuntjens and D. C. Larbalestier, Development of In-Situ Second Phase Pinning Structure in Niobium-Titanium Based Superconducting Alloys, IEEE Trans. on Magn. 27(2): 1120 (1991).CrossRefGoogle Scholar
  8. 8.
    K. Matsumoto, Y. Tanaka, K. Yamafuji, M. Iwakuma, and T. Matsushita, Effects of Artificial Pins on the Flux Pinning Force and Other Superconducting Properties in NbTi Superconductors, IEEE Trans. on Appl. Supercond. 3(1): 1362 (1993).CrossRefGoogle Scholar
  9. 9.
    R. M. Scanlan, D. R. Deitderich, P. McManaman, and W. Ghiorso, Characterization and Coil Test Results for a Multifilamentary NbTi Conductor Utilizing Artificial Pinning Center Technology, IEEE Trans. on Magn. 27(1): 1358 (1991).Google Scholar
  10. 10.
    R. M. Scanlan, A. Lietzke, J. Royet, A. Wandesforde, C.E. Taylor, J. Wong, and M. K. Rudziak, Evaluation of APC NbTi Superconductor in a Model Dipole Magnet, IEEE Trans. on Magn. 30(4): 1627 (1994).CrossRefGoogle Scholar
  11. 11.
    C. Renaud, M. Rudziak, J. Seuntjens, T. Wong, J. Wong, P. Eckels, C. King, T. Havens, D. Mantone, B. Myers, and S. Wong, First Commercial Application of NbTi Superconductor Employing Artificial Pinning Centers, IEEE Trans. on Appl. Supercond. 5(2): 1189 (1995).CrossRefGoogle Scholar
  12. 12.
    M. K. Rudziak, J. M. Seuntjens, C. V. Renaud, T. Wong, and J. Wong, Development of APC Nb-Ti Composite Conductors at Supercon, Inc., IEEE Trans. on Appl. Supercond. 5(2): 1709 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • M. K. Rudziak
    • 1
  • J. M. Seuntjens
    • 1
  • T. Wong
    • 1
  • J. Wong
    • 1
  1. 1.Supercon, Inc.ShrewsburyUSA

Personalised recommendations