Ferromagnetic Artificial Pinning Centers in Multifilamentary Superconducting Wires

  • J.-Q. Wang
  • N. D. Rizzo
  • J. D. McCambridge
  • D. E. Prober
  • L. R. Motowidlo
  • B. A. Zeitlin
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

We fabricated lnultifilamentary NbTi wires with ferromagnetic (FM) artificial pinning centers (APCs) to enhance the critical current density (Jc) in magnetic fields. We used a bundle and draw technique to process the APC wires with either Ni or Fe as the pinning centers. Both wires produced higher Jc in the high field range (5–9 T) than previous non-magnetic APC wires similarly processed, even though we have not yet optimized pin percentage. Using a magnetometer we found that the pins remained ferromagnetic for the wires with maximum Jc. However, we did observe a substantial loss of FM material for the wires where the pin diameter approached 3 nm. Thus, we expect further enhancement of Jc with better pin quality.

Keywords

Coherence Length Final Size Large Filament Pinning Center Wire Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. A. Zeitlin, M. S. Walker, and L. R. Motowidlo, United States Patent No. 4803310 Feb. 7, 1989. (IGC Disclosure 1.983).Google Scholar
  2. 2.
    L. R. Motowidlo, H. C. Kanithi, B. A. Zeitlin, “NbTi Superconductors with Artificial Pinning Structure”, Adv. Cryog. Eng. 36A: 311 (1990).CrossRefGoogle Scholar
  3. 3.
    L. D. Cooley, P. J. Lee, and D. C. Larbalestier, “Is Magnetic Pinning A dominant Mechanism in Nb-Ti”, JEEE Trans. MAC, 27: 1096 (1991).Google Scholar
  4. 4.
    H. C. Kanithi, P. Valaris, L. R. Motowidlo, B. A. Zeitlin and R. Scanlon, “Further Developments in NbTi Superconductors with Artificial Pinning Centers”, Adv. Cryog. Eng. 38B: 675(1992).Google Scholar
  5. 5.
    K. Yamafuji, N. Harada, Y. Mawatari, K. Furaki, T. Matsushita, K. Matsumoto, O. Miura., and Y. Tanaka, Cryogenics 31: 431(1991).CrossRefGoogle Scholar
  6. 6.
    D. R. Dietderich, S. Eylon and R. Scanlon, Adv. Cryog. Eng. 38B: 685 (1992).Google Scholar
  7. 7.
    L. R. Motowidlo, B. A. Zeitlin, M. S. Walker and P. Haldar, “Multifilament NbTi with Artificial Pinning Centers: The Effect of Alloy and Pin Material on the Superconducting Propertie”, Appl. Phys. Lett. 61: 991(1992).CrossRefGoogle Scholar
  8. 8.
    L. R. Motowidlo, B. A. Zeitlin, M. S. Walker, P. Haldar, J. D. McCambridge, N. D. Rizzo, X. S. Ling, and D. E. Prober, “Multifilamentary NbTi with Artificial Pinning Centers: The Effect of Alloy, Pin Material and Ceometry on the Superconducting Properties”, IEEE Trans. Appl. Supercond. 3: 1366 (1993).CrossRefGoogle Scholar
  9. 9.
    K. Matsumoto, H. Takewaki, Y. Tanaka, O. Miura, K. Yamafuji, K. Funaki, M. Iwakuma, T. Matsushita, “Enhanced Jc Properties in Superconducting NbTi Composites by Introducing Nb Artificial Pins with a Layered Structure”, Appl. Phys. Lett. 64: 115 (1994).CrossRefGoogle Scholar
  10. 10.
    M. K. Rudziak, J. M. Seuntjens, C. V. Renaud, T. Wong, and J. Wong, “Development of APC Nb-Ti Composite Conductors at Supercon, Inc.”, IEEE Trans. Appl. Supercond. 5: 1709(1995).CrossRefGoogle Scholar
  11. 11.
    C. Meingast, P. J. Lee, and D. C. Larbalestier, “Quantitative Description of a High Jc Nb-Ti Superconductor during Its Final Optimization Strain”, J. Appl. Phys. 66: 5962 (1989); C. Meingast and D. C. Larbalestier, J. Appl. Phys. 66: 5971 (1989).CrossRefGoogle Scholar
  12. 12.
    J. J. Hauser, H. C. Theuerer, and N. R. Werthamer, “Proximity Effects between Superconducting and Magnetic Films”, Phys. Rev. 142: 118 (1966).CrossRefGoogle Scholar
  13. 13.
    L. R. Motowidlo, B. A. Zeitlin, X. S. Ling, N. D. Rizzo, J. D. McCambridge, and I. E. Prober, “Flux Pinning in NbTi Superconductors with Engineered Pinning Centers”, in “Processing Long Length Supercond.”, TMS, Warrendale (1994).Google Scholar
  14. 14.
    C. Kittel, “Introduction to Solid State Physics, 6th Edition”, John Wiley&Son, New York, p.429 (1986).Google Scholar
  15. 15.
    R. W. Heussner, P. D. Jablonski, P. J. Lee, and D. C. Larbalestier, “Properties of Rod-Based Artificial Pinning Center Nb-Ti Superconductors”, IEEE Trans. Appl. Supercond. 5: 1705 (1995).CrossRefGoogle Scholar
  16. 16.
    J.-Q. Wang and G. Xiao, “Transition-metal Granular Solids: Microstructure, Magnetic Properties, and Giant Magnetoresistance”, Phys. Rev. B 49: 3982 (1994).CrossRefGoogle Scholar
  17. 17.
    L. D. Cooley and D. C. Larbalestier, “Quantification of Flux Pinning by the Surface Barrier in Submicron-Filament Nb-Ti Composite Wires”, Proc. 8th US-Japan Workshop, Univ. of Wisconsin, Madison (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • J.-Q. Wang
    • 1
  • N. D. Rizzo
    • 1
  • J. D. McCambridge
    • 1
  • D. E. Prober
    • 1
  • L. R. Motowidlo
    • 2
  • B. A. Zeitlin
    • 2
  1. 1.Department of Applied PhysicsYale UniversityNew HavenUSA
  2. 2.IGC-Advanced SuperconductorsWaterburyUSA

Personalised recommendations