Tensile and Fracture Behavior in Mode I and Mode II of Fiber Reinforced Plastics Following Reactor Irradiation

  • K. Humer
  • E. K. Tschegg
  • H. W. Weber
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

Various fiber reinforced plastics (epoxies, poly- and bismaleimides as resins; two- and three-dimensional E-, S- or T-glass fabrics as reinforcements) were irradiated at room temperature by 2 MeV electrons and 60Co-gamma rays up to 1.8×108 Gy and by different reactor spectra up to a neutron fluence of 1×1023 m2(E>0.1MeV) at room temperature, 80 K or 5 K. Mechanical tests in the tensile as well as in the intralaminar crack opening (mode I) and in the shear mode (mode II) were carried out on the irradiated samples at 77 K. After low temperature irradiation, half of the samples were subjected to warm-up cycles to room temperature before testing at 77 K. Results on the influence of different radiation sources and annealing cycles on the mechanical properties of all composites will be compared.

Keywords

Crack Initiation Ultimate Tensile Strength Temperature Irradiation Radiation Environment Reactor Irradiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.S. Brown, Radiation effects in superconducting fusion-magnet materials, J. Nucl. Mat. 97:1 (1981).CrossRefGoogle Scholar
  2. 2.
    Insulators for Fusion Applications, IAEA-TECDOC-417, IAEA, Vienna (1987).Google Scholar
  3. 3.
    R.R. Coltman, Jr., Organic insulators and the copper stabilizer for fusion reactor magnets, J. Nucl. Mat. 108&109:559 (1982).CrossRefGoogle Scholar
  4. 4.
    K. Humer, H.W. Weber, and E.K. Tschegg, Radiation effects on insulators for superconducting fusion magnets, Cryogenics in press.Google Scholar
  5. 5.
    H.W. Weber, and E.K. Tschegg, Test program for mechanical strength measurements on fiber reinforced plastics exposed to radiation environments, Adv. Cryog. Eng. 36:863 (1990).Google Scholar
  6. 6.
    K. Humer, H.W. Weber, E.K. Tschegg, S. Egusa, R.C. Birtcher, and H. Gerstenberg, Tensile and shear fracture behavior of fiber reinforced plastics at 77K irradiated by various radiation sources Adv. Cryog. Eng. 40B:1015 (1994).Google Scholar
  7. 7.
    K. Humer, H.W. Weber, E.K. Tschegg, S. Egusa, R.C. Birtcher, and H. Gerstenberg, Tensile strength of fiber reinforced plastics at 77K irradiated by various radiation sources J. Nucl. Mat. 212–215:849 (1994).Google Scholar
  8. 8.
    K. Humer, H.W. Weber, E.K. Tschegg, S. Egusa, R.C. Birtcher, H. Gerstenberg, and B.N. Goshchitskii, Low temperature tensile and fracture mechanical strength in mode I and mode II of fiber reinforced plastics following various irradiation conditions Proc. SOFT 18, Karlsruhe, Germany (in press).Google Scholar
  9. 9.
    K. Humer, H.W. Weber, E.K. Tschegg, H. Gerstenberg, and B.N. Goshchitskii, Tensile and fracture behavior in mode I and mode II of fiber reinforced plastics at 77K following low temperature irradiation Cryogenics (1995) in press.Google Scholar
  10. 10.
    E.K. Tschegg, K. Humer, and H.W. Weber, Fracture tests in mode I on fibre reinforced plastics, J. Mat. Sci. 28:2471 (1993).CrossRefGoogle Scholar
  11. 11.
    E.K. Tschegg, K. Humer, and H.W. Weber, Mode II fracture tests on fiber reinforced plastics, J.Mat. Sci. 30:1251(1995).CrossRefGoogle Scholar
  12. 12.
    E.K. Tschegg, K. Humer, and H.W. Weber, Influence of test geometry on tensile strength of fiber reinforced plastics at cryogenic temperatures, Cryogenics 31:312 (1991).CrossRefGoogle Scholar
  13. 13.
    K. Humer, E.K. Tschegg, H.W. Weber, K. Noma, J. Yasuda, and Y. Iwasaki, Specimen size effect on tensile strength of three-dimensionally glass-fabric reinforced plastics at room and cryogenic temperatures, Cryogenics 33:162 (1993).CrossRefGoogle Scholar
  14. 14.
    K. Humer, E.K. Tschegg, and H.W. Weber, Specimen size effect and fracture mechanical behavior of fiber reinforced plastics in the crack opening mode (mode I), Cryogenics (ICMC Supplement) 32:14 (1992).Google Scholar
  15. 15.
    L.R. Greenwood and R.K. Smither, SPECTER: Neutron damage calculations for materials irradiations, ANL/FPP/TM-197(1985).CrossRefGoogle Scholar
  16. 16.
    K. Humer, Thesis, Technical University of Vienna (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • K. Humer
    • 1
  • E. K. Tschegg
    • 2
  • H. W. Weber
    • 1
  1. 1.Atominstitut der Österreichischen UniversitätenWienAustria
  2. 2.Institut für Angewandte und Technische PhysikTU WienWienAustria

Personalised recommendations