Skip to main content

Tensile and Fracture Behavior in Mode I and Mode II of Fiber Reinforced Plastics Following Reactor Irradiation

  • Chapter
Advances in Cryogenic Engineering Materials

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 42))

Abstract

Various fiber reinforced plastics (epoxies, poly- and bismaleimides as resins; two- and three-dimensional E-, S- or T-glass fabrics as reinforcements) were irradiated at room temperature by 2 MeV electrons and 60Co-gamma rays up to 1.8×108 Gy and by different reactor spectra up to a neutron fluence of 1×1023 m2(E>0.1MeV) at room temperature, 80 K or 5 K. Mechanical tests in the tensile as well as in the intralaminar crack opening (mode I) and in the shear mode (mode II) were carried out on the irradiated samples at 77 K. After low temperature irradiation, half of the samples were subjected to warm-up cycles to room temperature before testing at 77 K. Results on the influence of different radiation sources and annealing cycles on the mechanical properties of all composites will be compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.S. Brown, Radiation effects in superconducting fusion-magnet materials, J. Nucl. Mat. 97:1 (1981).

    Article  CAS  Google Scholar 

  2. Insulators for Fusion Applications, IAEA-TECDOC-417, IAEA, Vienna (1987).

    Google Scholar 

  3. R.R. Coltman, Jr., Organic insulators and the copper stabilizer for fusion reactor magnets, J. Nucl. Mat. 108&109:559 (1982).

    Article  Google Scholar 

  4. K. Humer, H.W. Weber, and E.K. Tschegg, Radiation effects on insulators for superconducting fusion magnets, Cryogenics in press.

    Google Scholar 

  5. H.W. Weber, and E.K. Tschegg, Test program for mechanical strength measurements on fiber reinforced plastics exposed to radiation environments, Adv. Cryog. Eng. 36:863 (1990).

    Google Scholar 

  6. K. Humer, H.W. Weber, E.K. Tschegg, S. Egusa, R.C. Birtcher, and H. Gerstenberg, Tensile and shear fracture behavior of fiber reinforced plastics at 77K irradiated by various radiation sources Adv. Cryog. Eng. 40B:1015 (1994).

    CAS  Google Scholar 

  7. K. Humer, H.W. Weber, E.K. Tschegg, S. Egusa, R.C. Birtcher, and H. Gerstenberg, Tensile strength of fiber reinforced plastics at 77K irradiated by various radiation sources J. Nucl. Mat. 212–215:849 (1994).

    Google Scholar 

  8. K. Humer, H.W. Weber, E.K. Tschegg, S. Egusa, R.C. Birtcher, H. Gerstenberg, and B.N. Goshchitskii, Low temperature tensile and fracture mechanical strength in mode I and mode II of fiber reinforced plastics following various irradiation conditions Proc. SOFT 18, Karlsruhe, Germany (in press).

    Google Scholar 

  9. K. Humer, H.W. Weber, E.K. Tschegg, H. Gerstenberg, and B.N. Goshchitskii, Tensile and fracture behavior in mode I and mode II of fiber reinforced plastics at 77K following low temperature irradiation Cryogenics (1995) in press.

    Google Scholar 

  10. E.K. Tschegg, K. Humer, and H.W. Weber, Fracture tests in mode I on fibre reinforced plastics, J. Mat. Sci. 28:2471 (1993).

    Article  CAS  Google Scholar 

  11. E.K. Tschegg, K. Humer, and H.W. Weber, Mode II fracture tests on fiber reinforced plastics, J.Mat. Sci. 30:1251(1995).

    Article  CAS  Google Scholar 

  12. E.K. Tschegg, K. Humer, and H.W. Weber, Influence of test geometry on tensile strength of fiber reinforced plastics at cryogenic temperatures, Cryogenics 31:312 (1991).

    Article  Google Scholar 

  13. K. Humer, E.K. Tschegg, H.W. Weber, K. Noma, J. Yasuda, and Y. Iwasaki, Specimen size effect on tensile strength of three-dimensionally glass-fabric reinforced plastics at room and cryogenic temperatures, Cryogenics 33:162 (1993).

    Article  CAS  Google Scholar 

  14. K. Humer, E.K. Tschegg, and H.W. Weber, Specimen size effect and fracture mechanical behavior of fiber reinforced plastics in the crack opening mode (mode I), Cryogenics (ICMC Supplement) 32:14 (1992).

    Google Scholar 

  15. L.R. Greenwood and R.K. Smither, SPECTER: Neutron damage calculations for materials irradiations, ANL/FPP/TM-197(1985).

    Book  Google Scholar 

  16. K. Humer, Thesis, Technical University of Vienna (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Humer, K., Tschegg, E.K., Weber, H.W. (1996). Tensile and Fracture Behavior in Mode I and Mode II of Fiber Reinforced Plastics Following Reactor Irradiation. In: Summers, L.T. (eds) Advances in Cryogenic Engineering Materials . Advances in Cryogenic Engineering Materials , vol 42. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9059-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9059-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9061-0

  • Online ISBN: 978-1-4757-9059-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics