Effect of Oxygen Partial Pressure on Superconducting Properties of Bi-2212/Ag Tapes Prepared by Doctor-Blade Method

  • N. Inoue
  • M. Okada
  • K. Higashiyama
  • K. Kato
  • H. Kitaguchi
  • H. Kumakura
  • K. Togano
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

We have investigated the relationship between oxygen partial pressure (PO2) during the partial-melting process and superconducting properties for doctor-blade processed Bi-2212/Ag tapes. Tapes were heat-treated at various PO2 value of 0.01–1.00atm. The DTA results for the doctor-blade tapes showed the melting point of the oxide rose with increasing PO2. Correspondingly, the optimum heat-treatment temperature also increased with increasing PO2. The tapes at PO2=L00atm had the highest Jc values of over 105A/cm2 at conditions of 4.2K, 10T, and their a.c. susceptibility showed a sharp transition indicating improved intergrain coupling. Examination of cross sections for tapes melted above 0.20atm PO2 showed the good crystal alignment. From these results, it was concluded that processing at high PO2 was an effective method to obtain good superconducting properties for doctor-blade tapes.

Keywords

Differential Thermal Analysis Oxygen Partial Pressure Superconducting Property High Oxygen Partial Pressure Differential Thermal Analysis Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Kase, K. Togano, H. Kumakura, D. R. Dietderich, N. Irisawa, T. Morimoto, and H. Maeda, Jpn. J. Appl. Phys., 29:L1096(1990).CrossRefGoogle Scholar
  2. 2.
    J. Kase, N. Irisawa, T. Morimoto, K. Togano, D. R. Dietderich, and H. Maeda, Appl. Phys. Lett., 56:970(1990).CrossRefGoogle Scholar
  3. 3.
    N. Tomita, J. Kase, E. Yanagisawa, H. Kitaguchi, H. Kumakura, K. Togano, K. Inoue, and K. Kato, p.777 in “Advances in Superconductivity VII/2”, Springer Verlag, Tokyo (1994).Google Scholar
  4. 4.
    M. Okada, K. Tanaka, K. Fukushima, J. Sato, and K. Higashiyama, Proceeding for AHMF ‘95, Tsukuba, Japan, to be published.Google Scholar
  5. 5.
    T. Kanai and N. Inoue, J. of Mat. Sci., 30: 3200(1995).CrossRefGoogle Scholar
  6. 6.
    L.R. Motowidlo, G. Galinski, G. Ozeryansky, W. Zhang, and E. E. Hellstrom, Appl. Phys. Lett., 65:2731(1994).CrossRefGoogle Scholar
  7. 7.
    K. Shibutani, T. Hase, Y. Fukumoto, S. Hayashi, Y. Inoue, R. Ogawa, and Y. Kawate, to be published in IEEE Trans, on Appl. Supercond.Google Scholar
  8. 8.
    T. Hasegawa, H. Kobayashi, H. Kumakura, and K. Togano, p.719 in “Advances in Superconductivity VII/2”, Springer Verlag, Tokyo(1994).Google Scholar
  9. 9.
    J. Shimoyama, J. Kase, T. Morimoto, H. Kitaguchi, H. Kumakura, K. Togano, and H. Maeda, Jpn. J. Appl. Phys., 31:L 1167(1992).CrossRefGoogle Scholar
  10. 10.
    W. Zhang and E. E. Hellstrom, to be published in Sci. and Teeh. Google Scholar
  11. 11.
    J. Shimoyama, N. Tomita, T. Morimoto, H. Kitaguchi, H. Kumakura, K. Togano, H. Maeda, K. Nomura, and M. Seido, Jpn. J. Appl. Phys., 31:L 1328(1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • N. Inoue
    • 1
  • M. Okada
    • 1
  • K. Higashiyama
    • 1
  • K. Kato
    • 2
  • H. Kitaguchi
    • 3
  • H. Kumakura
    • 3
  • K. Togano
    • 3
  1. 1.Hitachi Research LaboratoryHitachi Ltd.Hitachi, IbarakiJapan
  2. 2.Hitachi Cable Ltd.Tsuchiura, Ibaraki 300Japan
  3. 3.National Research Institute for MetalsTsukuba Ibaraki 305Japan

Personalised recommendations