Control of Precursors for BSCCO Powder-in-Tube Process by Cryoprocessing

  • P. Krishnaraj
  • M. Lelovic
  • T. Deis
  • B. C. Prorok
  • N. G. Eror
  • U. Balachandran
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)


Critical current densities of Bi-2223 tapes made by the oxide-powder-in-tube (OPIT) process depend on the microstructure of the superconductor. Conventional ceramic synthesis techniques lead to a multiphase microstructure with large second phase particles and poor grain alignment, which can disrupt the path for current transport. To overcome the limitations of conventional processing, a cryoprocessing technique (freeze-drying) was developed, which provided control of the phase assemblage to be packed into the Ag tubes before mechanical working. The freeze-drying process resulted in intimate mixing of CaCuO2 and Bi1.8Pb0.4Sr2CaCu2Oz and led to rapid formation of the 2223 phase with a minimum of impurity phases. The process allows for the large scale synthesis of precursors specifically tailored to the manufacture of long lengths of tapes by the OPIT process.


Critical Current Density Impurity Phase Current Transport Heat Treatment Time Nitrate Precursor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arendt, R., Garbauskas, M.F., Lay, K. and Tkaczyk, J. Physica C 194, 383 (1992).CrossRefGoogle Scholar
  2. 2.
    Sato, K., Hikata, T., Mukal, H., Ueyama, M., Shibuta, N., Kato, T., Masuda, T., Nagata, M., Iwata, K. and Mitsui, T. IEEE Transactions on Magnetics 27, No.2, 1231–1238 (1991).CrossRefGoogle Scholar
  3. 3.
    Yamada, Y., Oberst, B. and Flukiger, R. Superconductor Science and Technology 4, No.4, 165–171 (1990).CrossRefGoogle Scholar
  4. 4.
    Grasso, G., Hensel, B., Jeremie, A. and Flukiger, R. Physica C 241, 45 (1994).CrossRefGoogle Scholar
  5. 5.
    Li, Q., Broderson, K., Hjuler, H. and Freltoft, T. Physica C217, 360 (1993).Google Scholar
  6. 6.
    Larbalestier, D., Cai, X., Edelman, H., Field, M., Feng, Y., Parrell, J., Pashitski, A. and Polyanskii, A. Journal of Metals 46, No.12, 20–22 (1994).Google Scholar
  7. 7.
    Lelovic, M., Krishnaraj, P., Eror, N. and Balachandran, U. Physica C 242, 246–250 (1995).CrossRefGoogle Scholar
  8. 8.
    Osamura, K., Oh, S. and Ochiai, S. Superconductor Science and Technology 3, 143 (1990).CrossRefGoogle Scholar
  9. 9.
    Hikata, T., Sato, K. and Hitotsuyanagi, H. Japanese Journal of Applied Physics 28, L82(1989).CrossRefGoogle Scholar
  10. 10.
    Dorris, S.E., Prorok, B.C., lanagan, M., Sinha, S. and Poeppel, R. Physica C 212, 66–74 (1993).CrossRefGoogle Scholar
  11. 11.
    Smith, M., Willis, J., Peterson, D., Bingert, J., Phillips, D., Coulter, J., Salazar, K. and Hults, W. Physica C231, 409 (1994).Google Scholar
  12. 12.
    Krishnaraj, P., Lelovic, M., Eror, N.G. and Balachandran, U. Physica C 215, 305–312 (1993).Google Scholar
  13. 13.
    Flukiger, R., Teremie, A., Hensel, B., Seibt, E., Xu, J. and Yamada, Y. Presented at the ICMC, (Huntsville, USA) (1991).Google Scholar
  14. 14.
    Coppa, N.V., Myer, G.H., Solomon, R.E., Bura, A., O’Reilly, J.W., Crow, J. and Davis, P. K. Journal of Materials Research 7, 2071 (1992).CrossRefGoogle Scholar
  15. 15.
    Johnson, S.M., Gusman, M.I., Rowcliff, DJ., Geballe, T.H. and Sun, J.Z. Advanced Ceramic Materials 2B, 337 (1987).Google Scholar
  16. 16.
    Primo, V., Sapina, F., Sanchis, M., Ibanez, R., Beltran, A. and Beitran, D. Solid State Ionics 63–65, 872–882 (1993).CrossRefGoogle Scholar
  17. 17.
    Song, H. K., Lui, H., Dou, S.X. and Sorrell, C.C. Journal of the American Ceramic Society 73, No. 6, 1771–1773 (1990z).CrossRefGoogle Scholar
  18. 18.
    Babu, T.G., and Greaves, C. Materials Research Bulletin 26, 499–506 (1991).CrossRefGoogle Scholar
  19. 19.
    Sanchis, M.J., Burgos, M., Carrasco, R., Sapina, F., Ibanez, R., Beltran, D. and Beltran, A. Solid State Ionics 66, 27–34 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • P. Krishnaraj
    • 1
  • M. Lelovic
    • 1
  • T. Deis
    • 1
  • B. C. Prorok
    • 1
    • 2
  • N. G. Eror
    • 1
  • U. Balachandran
    • 2
  1. 1.Dept. of Materials ScienceUniv. of PittsburghPittsburghUSA
  2. 2.Energy Technology Div.Argonne National LaboratoryArgonneUSA

Personalised recommendations