Improved Bi-2212/Ag Performance as a Competitor to Bi-2223/Ag in High-Tc Superconductor Wire Applications

  • M. H. Ionescu
  • S. X. Dou
  • E. Babic
  • I. Kusevic
  • E. W. Collings
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

The performance of Bi-2212 monofilament tape, produced by the powder-in-tube technique and a decomposition — recovery melt process, was significantly improved by employing an optimum dual atmosphere heat treatment. The atmosphere consists of nitrogen and oxygen applied alternatively at various stages during the process, and results in oxygen vacancies within the well aligned crystallites.

The investigation was carried out on short (50mm) samples, having a cross-section area of the ceramic core in the range 2×104µm2 – 5×104µm2.

An increase in the transport critical current Ic of up to 11A at 77K and up to 68 A at 4.2K in zero field (luAVcm electric field criterion) has been achieved, yielding a current caring capacity Jc in the range (2–4)×104A/cm2 at 77K and (1–3)×105A/cm2 at 4.2K.

The pinning energy is weaker than in the Bi-2223 tapes, but almost identical to the Bi-2212 epitaxial films. This, combined with a “one deformation — one heat treatment (∼30 h)” procedure, makes 2212 a strong competitor for low temperature wire applications.

Keywords

Critical Current Density Twist Boundary Broad Face Flux Creep Electric Field Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Heine, J. Tenbrink, and M. Thöner, Appl. Phys. Lett. 55, 2441, (1989).CrossRefGoogle Scholar
  2. 2.
    N. Shibuta, M. Ueyama, H. Mukai, and K. Sato, Jpn. J. Appl. Phys. 30, L2083, (1991).CrossRefGoogle Scholar
  3. 3.
    Y. C. Guo, H. K. Liu, and S. X. Dou, Materials Letters 18, 336, (1994).CrossRefGoogle Scholar
  4. 4.
    M. Tinkham, Phys. Rev. Lett. 61, 1658, (1988).CrossRefGoogle Scholar
  5. 5.
    T. T. M. Palstra, B. Batlogg, R. B. vanDover, L. F. Schneemeyer, and J. V. Waszczak, Appl. Phys. Lett. 54, 763, (1989).CrossRefGoogle Scholar
  6. 6.
    A. P. Malozemoff, T. K. Wothington, E. Zeldov, N. C. Yeh, M. W. McElfresh, and F. Holtzberg, “Strong Correlation and Superconductivity” ed. by H. Fukuyama et al. , Springer Verlag, Berlin, (1989), vol. 89, p. 349.Google Scholar
  7. 7.
    J. T. Kucera, T. P. Orlando, G. Virshup, and J. N. Eckstein, Phys. Rev. B, 46, 11004, (1992)CrossRefGoogle Scholar
  8. 8.
    B. Batlogg, T. T. M. Palstra, L. F. Schneemeyer, and J. V. Waszczak, “Strong Correlation and Superconductivity” ed. by H. Fukuyama et al. , Springer Verlag, Berlin, (1989), vol. 89, p. 452Google Scholar
  9. 9.
    T. T. M. Palstra, B. Batlogg, R. B. vanDover, L. F. Schneemeyer,and J. V. Waszczak, Phys. Rev. B, 41, 6621, (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • M. H. Ionescu
    • 1
  • S. X. Dou
    • 1
  • E. Babic
    • 2
  • I. Kusevic
    • 2
  • E. W. Collings
    • 3
  1. 1.Center for Superconducting and Electronic MaterialsUniversity of WollongongWollongongAustralia
  2. 2.Physics DepartmentUniversity of ZagrebZagrebCroatia
  3. 3.Science DepartmentOhio State UniversityColumbusUSA

Personalised recommendations