Computer Simulations of Large-Grain YBCO Properties

  • I. A. Parinov
  • E. V. Pozhkov
  • C. E. Vassil’chenko
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 44)


Based on a Monte-Carlo computer-simulation technique, we modeled large-grain superconducting YBa2Cu3O7-δ (YBCO) microstructures, taking into account the dispersed normal Y2BaCuO5 (211) phase and using seedings. The possible toughening mechanisms acting in the YBCO due to the existence of the particulate 211 phase are discussed. Some effective conductive properties of modeled structures were estimated by percolation methods.


Fracture Toughness Stress Intensity Factor Acta Metall Critical Current Density Stress Intensity Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. I. W. Lo, D.A. Cardwell, S.-L. Dung, and R.G. Barter, Processing of bulk YBa2Cu3074 ceramics prior to peritectic solidification, J. Mater. Sci. 30: 3995 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    K. Jagannadham and J. Narayan, A comparative study of grain boundary structure and critical current density in 123-YBaCuO, 2212-BiSrCaCuO and 2223-TIBaCaCuO high temperature superconductors, Mater. Sci. Eng. B 8: 201 (1991).CrossRefGoogle Scholar
  3. 3.
    H.W. Zandbergen, R. Gronski, and G. Thomas, High resolution electron microscopy study of grain boundaries in sintered YBa2Cu3074, Physica C 153–155: 1002 (1988).Google Scholar
  4. 4.
    G.W. Hong, K.-B. Kim, 1.-H. Kuk, C.-J. Kim, Y.-S. Lee, and H.-S. Park, Defects around the Y211 inclusion trapped within the melt-textured Y123 domain and its formation mechanism, IEEE Trans. App!. Supercond In press.Google Scholar
  5. 5.
    E.A. Goodilin and N.N. Oleynikov, Physico-chemical bases and development advantages of HTSCmaterials melt preparation techniques (Overview), Superconductivity: Res. Develop. 5–6: 81 (1995).Google Scholar
  6. 6.
    W. Lo, D.A. Cardwell, C.D. Dewhurst, and S.-L. Dung, Fabrication of large grain YBCO by seeded peritectic solidification, J. Mater. Res. 11: 786 (1996).ADSCrossRefGoogle Scholar
  7. 7.
    I.A. Parinov, Computer simulation of gradient sintering and microcracking of superconductive YBa2Cu3O7_5 ceramics, Cryogenics 32: 448 (1992).Google Scholar
  8. 8.
    I.A. Parinov and L.V. Parinova, Sintering and failure of HTSC ceramics: the feasibilities of computer testing, Superconductivity: Phys. Chem. Technol. 7: 79 (1994).Google Scholar
  9. 9.
    I.A. Parinov, E.V. Rozhkov, and C.E. Vassil’chenko, Microstructural features and fracture resistance of superconductive ceramics, IEEE Trans. Appl. Supercond. In press.Google Scholar
  10. 10.
    M. Kaplitsky and I. Parinov, Fatigue fracture of superconductive YBCO ceramics by cyclic loading, in: “Proc. Int. Conf. on Fatigue of Composites” (Paris, 3–5 June 1997 ). In press.Google Scholar
  11. 11.
    I. Steinbach, F. Pezzola, B. Nestler, M. Seesselberg, R. Prieler, G.J. Schmitz, and J.L.L. Rezende, A phase field concept for multiphase systems, Physica D 94: 135 (1996).zbMATHCrossRefGoogle Scholar
  12. 12.
    G.J. Schmitz, B. Nestler, and M. Seesselberg, YBCO melt-processing development by numerical simulation, J. Low Temper. Phys. In press.Google Scholar
  13. 13.
    M. Seesselberg, G.J. Schmitz, B. Nestler, and I. Steinbach, Macroscopic and microscopic modelling of growth of YBaCuO bulk material, IEEE Trans. Appl. Supercond. In press.Google Scholar
  14. 14.
    D.N. Karpinsky and I.A. Parinov, Investigation of piezoceramic microstructure formation process by computer simulation, J. Appl. Mech. Tech. Phys. 1:150 (1992).Google Scholar
  15. 15.
    I.A. Parinov and Yu.S. Vasil’eva, Structural imitative modelling of ferroelectric ceramic sintering and fracture, Str. Mater. 8: 77 (1994).Google Scholar
  16. 16.
    G.N. Dul’nev and Yu.P. Zaritchnjak. “Thermal Conductivity Mixes and Composite Materials,” Energiya, Leningrad (1974).Google Scholar
  17. 17.
    M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni, Computer simulation of grain growth - I. Kinetics, Acta Metall. 32: 783 (1984).CrossRefGoogle Scholar
  18. 18.
    D.J. Srolovitz, M. P. Anderson, G.S. Grest, and P.S. Sahni, Computer simulation of grain growth - III. Influence of a particle dispersion, Acta Meta!!. 32: 1429 (1984).CrossRefGoogle Scholar
  19. 19.
    D.J. Srolovitz, G.S. Grest, and M.P. Anderson, Computer simulation of grain growth - V. Abnormal grain growth, Acta Metall. 33: 2233 (1985).CrossRefGoogle Scholar
  20. 20.
    K.S. Chemyaysky. “Stereologiya v Metallovedenii”, Metallurgiya, Moscow, (1977).Google Scholar
  21. 21.
    I.A. Parinov and L.V. Parinova, Is the twinning an effective toughening mechanism for superconductive YBa2Cu3O7_s ceramics? Superconductivity: Phys. Chem. Technol. 7: 1382 (1994).Google Scholar
  22. 22.
    A. Goya!, W.C. Oliver, P.D. Funkenbusch, D.M. Kroeger, and S.J. Burns, Mechanical properties of highly aligned YBa2Cu3O2.. Effect of Y2BaCuOx particles, Physica C 183: 221 (1991).ADSCrossRefGoogle Scholar
  23. 23.
    F. Sandiumenge, N. Vilalta, S. Pinol, B. Martinez, X. Obradors, Aging of the microstructure of melt-textured YBa2Cu3C7/Y2BaCuO5 composites and implications on their superconducting properties, Phys. Rev. B. 51: 6645 (1995).ADSCrossRefGoogle Scholar
  24. 24.
    D. Pavel, Influence of Y2BaCuO5 particles on the microstructure of YBa2Cu3O7_,, (123)- Y2BaCuO5 (211) melt-textured superconductors, Phys. Rev. B 52: 13658 (1995).CrossRefGoogle Scholar
  25. 25.
    V.A. Murashov, P. Schatzle, G. Krabbes, J. Klosowski, H. Wendrock, H.R. Vogel, K. Eversmann, Influence of the Y2BaCuO5 particle size distribution on the crack propagation and the trapped magnetic flux in melt textured YBCO, Physica C 261: 181 (1996).ADSCrossRefGoogle Scholar
  26. 26.
    G.J. Schmitz, J. Laakmann, Ch. Wolters, S. Rex, W. Gawalek, T. Habisreuther, G. Bruchlos, and P. Gomet, Influence of Y2BaCuO5 particles on the growth morphology of peritectically solidified YBa2Cu3O7_x, J. Mater. Res. 8: 2774 (1993).ADSCrossRefGoogle Scholar
  27. 27.
    K.T. Faber and A.G. Evans, Crack deflection processes - I. Theory, Acta Metall, 31: 565 (1983).CrossRefGoogle Scholar
  28. 28.
    B. Budiansky, J.C. Amazigo, and A.G. Evans, Small-scale crack bridging and the fracture toughness of particulate-reinforced ceramics, J. Mech. Phys. Solids 36: 167 (1988).ADSCrossRefGoogle Scholar
  29. 29.
    J.C. Li, and S.C. Sanday, Dispersion toughening, Acta Metall, 34: 537 (1986).CrossRefGoogle Scholar
  30. 30.
    H. Gould and J. Tobochnic, “An Introduction to Computer Simulation Methods Applications to Physical Systems,” Part 2, Addison-Wesley Publishing Company, New York (1988).Google Scholar
  31. 31.
    Y.A. Kozinkina and I.A. Parinov, Computer simulations of Bi-2223 sintered bulk, to be published in Advances in Cryogenic Engineering (Materials), vol. 44, Plenum, New York (1998).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • I. A. Parinov
    • 1
  • E. V. Pozhkov
    • 1
  • C. E. Vassil’chenko
    • 1
  1. 1.Mechanics and Applied Mathematics Research InstituteRostov-on-DonRussia

Personalised recommendations