Processing Considerations for Adding Nanometer-Scale Oxides to Enhance Flux Pinning in High-Temperature Superconductors

  • Y. Xu
  • K. C. Goretta
  • M. M. Cuber
  • M. L. Burdt
  • L. R. Feng
  • Nan Chen
  • U. Balachandran
  • M. Xu
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 44)


Several nanometer-scale oxide inclusions were added to Bi2Sr2CaCu2Ox high-temperature superconductors to determine their effectiveness in creating intragranular flux-pinning sites. Powder pellets were fabricated and heat treated by partial-melt processing. Effects of the additives on melting response, superconducting properties, and microstructural development were examined. Al2O3 additions exhibited the most promise for forming stable pinning centers, ZrO2 and SnO2 additions were moderately promising, TiO2, Fe2O3, and ZnO additions were less promising, and Y2O3 additions destroyed superconductivity.


Scale Oxide Oxide Addition Flux Pinning Scanning Electron Microscopy Photomicrograph Dope Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Murakami, N. Sakai, T. Higuchi, and S. I. Yoo, Melt-processed light rare earth elementBa-Cu-O, Supercond. Sci. Technol. 9: 1015 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    K. Fossheim, E. D. Tuset, T. W. Ebbesen, M. M. J. Treacy, and J. Schwartz, Enhanced flux pinning in Bi2Sr2CaCu208+x superconductor with embedded carbon nanotubes, Physica C 248: 195 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    S. Sengupta, V. R. Todt, K. C. Goretta, D. J. Miller, Y. L. Chen, and U. Balachandran, Effects of carbon additions to melt-processed YBa2Cu3Ox and Bi2Sr2CaCu2Ox compacts, IEEE Trans. Appl. Supercond 7: 1727 (1997).CrossRefGoogle Scholar
  4. 4.
    S. Sengupta, V. R. Todt, P. Kostic, Y. L. Chen, M. T. Lanagan, and K. C. Goretta, Flux pinning in high-Tc superconductors through addition of nanophase oxides, Physica C 264: 34 (1996).Google Scholar
  5. 5.
    D. Shi, M. S. Boley, U. Welp, J. G. Chen, and Y. Liao, Flux pinning by precipitates in the Bi-Sr-Ca-Cu-O system, Phys. Rev. B 40: 5255 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    D. H. Kim, K. E. Gray, R. T. Kampwirth, J. C. Smith, D. S. Richeson, T. J. Marks, J. H. Kang, J. Talvacchio, and M. Eddy, Effect of Cu-O layer spacing on the magnetic field induced resistive broadening of high-temperature superconductors. Physica C 177: 431 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    P. E. Kazin, M. Jansen, A. Larrea, G. F. de la Fuente, and Yu. D. Tretyakov, Flux pinning improvement in Bi-2212 silver sheathed tapes with submicron SrZr03 inclusions, Physica C 253: 391 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Tanaka, F. Matsumoto, H. Maeda, and M. Ishizuka, Improved Jc property of Bi2223 tapes made using AgCu alloy-sheath doped with Ti, Zr, Hf or Au, IEEE Trans. Appl. Supercond. 5: 1158 (1995).CrossRefGoogle Scholar
  9. 9.
    K. C. Goretta, V. R. Todt, D. J. Miller, M. T. Lanagan, Y. L. Chen, U. Balachandran, J. Guo, and J. A. Lewis, Engineered flux-pinning centers in Bi2Sr2CaCu2Ox and TIBa2Ca2Cu3Ox superconductors, J. Electron. Mater. 24: 1961 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    P. Majewski, The use of phase diagrams for the engineering of flux pinning centres in Bi2Sr2CaCu2Ox ceramics, Appl. Supercond. 3: 289 (1995).CrossRefGoogle Scholar
  11. 11.
    H.-L. Su, P. Majewski, and F. Aldinger, Precipitation and pinning in Pb doped Bi2212 ceramics, Physica C 249: 241 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    P. Yang and C. M. Lieber, Nanorod-superconductor composites: a pathway to materials with high critical current densities, Science 273: 1836 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    W. Wei, Y. Sun, J. Schwartz, K. C. Goretta, U. Balachandran, and A. Bhargava, Preparation and properties of nanosize Ti02- and MgO-doped Bi2Sr2CaCu2Ox tapes, IEEE Trans. Appl. Supercond. 7: 1556 (1997).CrossRefGoogle Scholar
  14. 14.
    I. Chong, Z. Hiroi, M. Izumi, J. Shimoyama, Y. Nakayama, K. Kishio, T. Terashima, Y. Bando, and M. Takano, High critical-current density in the heavily Pb-doped Bi2Sr2CaCu208+8 superconductor: generation of efficient pinning centers, Science 276: 770 (1997).CrossRefGoogle Scholar
  15. 15.
    K. C. Goretta, B. P. Brandel, M. T. Lanagan, J. G. Hu, D. J. Miller, S. Sengupta, J. C. Parker, M. N. Ali, and N. Chen, Reactive nanophase oxide additions to melt-processed high-Tc superconductors, IEEE Trans. Appl. Supercond. 5: 1309 (1995).CrossRefGoogle Scholar
  16. 16.
    J. C. Parker, Nanophase Technologies Corporation, Burr Ridge, IL, private communication (1995).Google Scholar
  17. 17.
    H. Gleiter, Nanocrystalline materials, Prog. Mater. Sci. 33: 223 (1989).CrossRefGoogle Scholar
  18. 18.
    I. Bloom, J. R. Frommelt, M. C. Hash, M. T. Lanagan, C.-T. Wu, and K. C. Goretta, Solid state synthesis of Bi2Sr2CaCu2Ox superconductor, Mater. Res. Bull. 26: 1269 (1991).CrossRefGoogle Scholar
  19. 19.
    C.-T. Wu, K. C. Goretta, and R. B. Poeppel, Effect of processing parameters on critical current density of Ag-clad Bi2Sr2CaCu2Ox tapes, Appl. Supercond. 1: 33 (1993).CrossRefGoogle Scholar
  20. 20.
    E. E. Hellstrom, Important considerations for processing Bi-based high-temperature superconducting tapes and films for bulk applications, MRS Bull. 17 [8]: 45 (1992).Google Scholar
  21. 21.
    G. Villard, D. Pelloquin, A. Maignan, and A. Wahl, Evidence of enhanced pinning properties in optimally doped single Bi2Sr2Cal-xYxCu208–8 crystals, Appl. Phys. Lett. 69: 1480 (1996).ADSCrossRefGoogle Scholar
  22. 22.
    T. G. Holesinger, Al203 additions for isothermal melt processing of Bi2Sr2CaCu20x, J. Mater. Res. 11: 2135 (1996).ADSCrossRefGoogle Scholar
  23. 23.
    T. W. Li, R. J. Drost, P. H. Kes, C. Traeholt, H. W. Zandbergen, N. T. Hien, A. A. Menovsky, and J. J. M. Franse, Enhanced flux pinning in Bi-2212 single crystals by planar defects introduced via Ti—substitution, Physica C 274: 197 (1997).ADSCrossRefGoogle Scholar
  24. 24.
    J.-C. Grivel, A. Jeremie, and R. Flükiger, The influence of TiO2 additions on the formation and the superconducting properties of the (Bi,Pb)2Sr2Ca2Cu3O10_y phase, Supercond. Sci. Technol. 8: 41 (1995).ADSCrossRefGoogle Scholar
  25. 25.
    M. Ishizuka, Y. Tanaka, and H. Maeda, Superconducting properties and microstructures of Bi-2223 Ag—Cu alloy sheathed tapes doped with Ti, Zr or Hf, Physica C 252: 339 (1995).ADSCrossRefGoogle Scholar
  26. 26.
    M. Xu, University of Chicago, unpublished information (1997).Google Scholar
  27. 27.
    H. M. Seyoum, J. M. Habib, L. H. Bennett, W. Wong-Ng, A. J. Shapiro, and L. J. Schwartzendruber, Superconducting properties of Bi2_X_yPbsSm,Sr2Ca2Cu3Oz, Supercond. Sci. Technol. 3: 616 (1990).ADSCrossRefGoogle Scholar
  28. 28.
    Y. L. Chen and R. Stevens, The effect of tin dopant on the phase formation and superconductivity in Bi(Pb)—Sr—Ca—Cu—O, J. Mater. Sci.: Mater. Electron. 1:197 (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Y. Xu
    • 1
    • 2
  • K. C. Goretta
    • 1
  • M. M. Cuber
    • 1
  • M. L. Burdt
    • 1
  • L. R. Feng
    • 1
  • Nan Chen
    • 1
  • U. Balachandran
    • 1
  • M. Xu
    • 3
  1. 1.Argonne National LaboratoryArgonneUSA
  2. 2.Mankato State UniversityMankatoUSA
  3. 3.University of ChicagoChicagoUSA

Personalised recommendations