Computer Simulations of Bi-2223 Sintered Bulk

  • Y. A. Kozinkina
  • I. A. Parinov
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 44)


Models for Bi-2223 ceramic processing and fracture, which is obtained by hot-pressing, are discussed. Computer simulation was applied to phenomena occurring during sintering, cooling, and following fracture due to the macrocrack growth. The effects of Ag particles dispersed into the Bi-2223 matrix on some strength properties were studied. Finally, a numerical model for the ceramic conductivity investigation is presented, along with some effective characteristics that were discovered.


Fracture Toughness Acta Metall Triple Junction Texture Component Cluster Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Balachandran and A.N. Iyer, Status of high-Tc superconductors, Mater. Technol. In press.Google Scholar
  2. 2.
    M. Satoh, A. Murata, S. Haseyama, M. Kojima, S. Yoshizawa, M. Fujisawa, and T. Negishi, Fabrication of high J c Bi-2223 sintered bulk, IEEE Trans. Appl. Supercond. In press.Google Scholar
  3. 3.
    H. Miao, F. Lera, A. Larrea, G.F. de la Fuente, and R. Navarro, Advances towards the rolling processing of long BSCCO tapes, IEEE Trans. Appl. Supercond. In press.Google Scholar
  4. 4.
    A. Larrea, E. Snoeck, A. Badia, G.F. de la Fuente, and R. Navarro, Microstructure, interfaces and magnetic behavior of thick Ag/BSCCO composite fibers, Physica C 220: 21 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    Q.Y. Hu, D. Yu., H.K. Liu, S.X. Dou, and M. Apperley, Microstructure and critical current of hot-pressed (Bi,Pb)2Sr2Ca2Cu3O10 ceramics, IEEE Trans. Appl. Supercond. In press.Google Scholar
  6. 6.
    D.N. Karpinsky and I.A. Parinov, Investigation of piezoceramic microstructure formation process by computer simulation. Appl. Mech. Techn. Phys.1:150 (1992).Google Scholar
  7. 7.
    I.A. Parinov, and Yu.S. Vasil’eva, Structural imitative modelling of ferroelectric ceramic sintering and fracture, Str. Mater. 8: 77 (1994).Google Scholar
  8. 8.
    I.A. Parinov, Computer simulation of gradient sintering and microcracking of superconductive YBa2Cu3O7_x ceramics, Cryogenics 32: 448 (1992).Google Scholar
  9. 9.
    G.N. Dul’nev, and Yu.P. Zaritchnjak, “Thermal Conductivity of Mixtures and Composite Materials,” Energiya, Leningrad (1974).Google Scholar
  10. 10.
    Yu.M. Tairov and V.F. Tzvetkov, “Technologies of Semiconductive and Dielectric Materials,” Visshaya Shkola, Moscow (1990).Google Scholar
  11. 11.
    I.A. Parinov, Computer simulation of the fracture and fracture toughness of the ferroelectric ceramics and related materials, Ferroelectrics 131: I3 I (1992).Google Scholar
  12. 12.
    I.A. Parinov and L.V. Parinova, Sintering and failure of HTSC ceramics: the feasibilities of computer testing, Superconductivity: Phys. Chem. Technol. 7: 79 (1994).Google Scholar
  13. 13.
    G. Abbruzzese, Computer simulated grain growth stagnation, Acta Metall. 33: 1329 (1985).CrossRefGoogle Scholar
  14. 14.
    G. Abbruzzese and K. Lucke, A theory of texture controlled grain growth.-I. Derivation and general discussion of the model, Acta Metall. 34: 905 (1986).CrossRefGoogle Scholar
  15. 15.
    H. Eichelkraut, G. Abbruzzese, and K. Lucke, A theory of texture controlled grain growth.-I1. Numerical and analytical treatment of grain growth in the presence of two texture components, Acta Metall. 36: 55 (1988).CrossRefGoogle Scholar
  16. 16.
    S.V. Lubenetz, V.D. Natzik, and L.S. Fomenko, Elastic moduli and low-temperature anomalies of acoustic properties of the high-temperature superconductors (Overview), Fiz. Nizk. Temp. 21: 475 (1995).ADSGoogle Scholar
  17. 17.
    M. Altunbas, T.D. Dzhafarov, T. Kucukomeroglu, A.I. Kopya, and O.Gorur, Anomalies of thermal expansion in Ag diffusion doped BiPbSrCaCuO superconductors, Physica C 249: 133 (1995).Google Scholar
  18. 18.
    C.L. Hom, P.A. Mataga, and R.M. McMeeking, Some recent developments in numerical modelling of fracture toughness in brittle matrix composites, Int. J. Numer. Meth. Eng. 27: 233 (1989).CrossRefGoogle Scholar
  19. 19.
    I.A. Parinov, E.V. Rozhkov, and C.E. Vassil’chenko, On the superconductive ceramic fracture resistance, IEEE Trans. Appl. Supercond. In press.Google Scholar
  20. 20.
    I.A. Parinov, Ferroelectric ceramic toughening by fracture: computer models, Ferroelectric Lett. 19: 157 (1995).CrossRefGoogle Scholar
  21. 21.
    L.R.F. Rose, Crack reinforcement by distributed springs,. 1 Mech. Phys. Solids 35: 383 (1987).zbMATHCrossRefGoogle Scholar
  22. 22.
    B. Budiansky, J. Amazigo, and A.G. Evans, Small-scale crack bridging and the fracture toughness of particulate-reinforced ceramics, J. Mech. Phys. Solids 36: 167 (1988).ADSCrossRefGoogle Scholar
  23. 23.
    A.G. Evans and R.M. McMeeking, On the toughening of ceramics by strong reinforcements, Acta Metall. 34: 2435 (1986).CrossRefGoogle Scholar
  24. 24.
    L.S. Sigl, P.A. Mataga, B.J. Dalglish, R.M. McMeeking, and A.G. Evans, On the toughness of brittle materials reinforced with a ductile phase, Acta Metall. 36: 945 (1988).CrossRefGoogle Scholar
  25. 25.
    Hisao Banno. Effects of shape and volume fraction of closed pores on dielectric, elastic, and electromechanical properties of dielectric and piezoelectric ceramics.- A theoretical approach Amer. Ceram. Soc. Bull. 66: 1332 (1987).Google Scholar
  26. 26.
    N.B. Romalis and V.P. Tamuzh. “Fracture of Structural Heterogeneous Solids,” Zinatne, Riga (1989).Google Scholar
  27. 27.
    V.G. Kompanceva and K.V. Rusanov, Stabilization of a superconductive state in high-temperature superconductors, Superconductivity: Res. Develop. 3–4: 41 (1994).Google Scholar
  28. 28.
    A.G. Evans, Microfracture from thermal expansion anisotropy-1. Single phase systems,. 4cta Metall. 26: 1845 (1978).CrossRefGoogle Scholar
  29. 29.
    Physical Values. Reference Book.“ I.S. Grigoriev and E.Z. Meilikhov, eds., Energoatomizdat, Moscow (1991), pp. 47, 223.Google Scholar
  30. 30.
    D.N. Karpinsky, I.A. Parinov, and L.V. Parinova, Computer simulation of sintering and fracture of the ferroelectric materials, Ferroelectrics 133: 265 (1992).CrossRefGoogle Scholar
  31. 31.
    H. Gould and J. Tobochnic. “An Introduction to Computer Simulation Methods Applications to Physical Systems,” Pt. 2, Addison-Wesley Publishing Company, New York, (1988).Google Scholar
  32. 32.
    K.S. Chernyaysky, “Stereologiya v Metallovedenii,” Metallurgiya, Moscow (1977).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Y. A. Kozinkina
    • 1
  • I. A. Parinov
    • 2
  1. 1.Rostov State UniversityRostov-on-DonRussia
  2. 2.Mechanics end Applied Mathematics Research InstituteRostov-on-DonRussia

Personalised recommendations