Phase Equilibrium and Formation of Bi2223 Phase in PIT-Processed Tapes

  • K. Osamura
  • H. Ito
  • T. Horita
  • S. Nonaka
  • H. D. Ramsbottom
  • H. Okuda
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 44)

Abstract

At the final sintering process of the PIT method, a specimen with a fixed composition of Bi1.6Ph0.4Sr1.6Ca2.0Cu2.8Ox is in a six phase equlibrium state which includes the superconducting Bi2223, 35 and other phases, (when sintered at 1109 K under 0.21 atm O2.) When sintered at 1103 K under 0.078 atm O2, the six phase field changes in the region which includes the 21 phase instead of the 35 phase. During the sintering process, the supercooled liquid phase appears and reacts with the Bi2212 phase to form the Bi2223 phase. From a kinematical viewpoint, it is suggested that the intercalation of Ca and Cu progresses rapidly, after the Bi2223 phase has nucleated at the edge of Bi2212 platelets.

Keywords

Bi2223 Phase Coexist Phase Region Free Energy Diagram Slow Cool Process Intergrowth Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Nonaka and K. Osamura, Physica C, in press (1997).Google Scholar
  2. 2.
    M. Wong, G. Xiong, X. Tang and Z. Hong, Physica C210, (1993), 413.Google Scholar
  3. 3.
    G. Grasso, A. Jeremie and R. Flnkiger, Snpercond. Sci. and Technol., 8 (1995), 827.ADSCrossRefGoogle Scholar
  4. 4.
    N. Merchant, J.S. Luo, V.A. Maroni, G.N. Riley and W.L. Carter, Appt. Phys. Lett., 65 (1994), 1039.Google Scholar
  5. 5.
    P.E.D. Morgan, R.M. Housley, J.R. Porter and J.J. Ratto, Physica C, 176 (1991), 279.ADSCrossRefGoogle Scholar
  6. 6.
    P.E.D. Morgan, J.D. Piche and R.M. Housley, Physica C, 191 (1992), 179.ADSCrossRefGoogle Scholar
  7. 7.
    P.E.D. Morgan, T. Doi and R. M.Housley, Adv. in Sapercond., VI (1991) 327.Google Scholar
  8. 8.
    T.L. Chen and R. Stevens, J.Amer. Ceram. Soc., 75 (1992), 1150.ADSCrossRefGoogle Scholar
  9. 9.
    W.M. Bian, Y. Zhu, Y.L. Wang and M. Suenaga, Physica C, 248 (1995), 119.ADSCrossRefGoogle Scholar
  10. 10.
    Z.X. Cai, Y. Zhu and D.O. Welch, Phys. Rev. B, 52 (1995), 13035.ADSCrossRefGoogle Scholar
  11. 11.
    Y.L. Wang et al, Appt. Phys. Lett., 69 (1996), 580.ADSCrossRefGoogle Scholar
  12. 12.
    K. Osamura, S. Nonaka and M.Matsui, Physica C, 257 (1996), 79.ADSCrossRefGoogle Scholar
  13. 13.
    K. Osamura, Y. Katsumura, S. Nonaka and H. Okuda., Adv. in Saapercond., IX(Springer, 1997 ), 855.Google Scholar
  14. 14.
    S.-S.Oh, K. Osamura and S. Ochiai. J. Mater. Sci. 26 (1991), 4220Google Scholar
  15. 15.
    K. Osamura, S. Nonaka and Y. Katsumura, Proc. 16th CEC/ICMC, (Elsevier, 1997 ), 1357.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • K. Osamura
    • 1
  • H. Ito
    • 1
  • T. Horita
    • 1
  • S. Nonaka
    • 1
  • H. D. Ramsbottom
    • 1
  • H. Okuda
    • 1
  1. 1.Department of Materials Science and EngineeringKyoto UniversitySakyo-ku, KyotoJapan

Personalised recommendations