Studies of the Bi(2223) Phase Formation Mechanism in Pb Substituted and Pb Free Bulk Samples and in Ag Sheathed Tapes

  • R. Flükiger
  • J. C. Grivel
  • G. Grasso
  • D. P. Grindatto
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 44)

Abstract

From the study of the Bi(2223) phase formation mechanism on pressed pellets of the Pb stabilized (Bi,Pb)2Sr2Ca2Cu3O10+d compound it was concluded that a nucleation and growth mechanism is suitable to describe the transformations occurring in air. This was concluded from observation by SEM of the transformations occurring on a fixed location at the surface of a pellet after several heat treatments at the reaction temperature, 852°C.

The same type of investigation, carried out on the compound Bi2Sr2Ca2Cu3O10+δ without Pb led to the same conclusions as for the case containing Pb, the only difference being a higher reaction temperature, 879°C.

Finally the study was extended to Ag sheathed Bi,Pb(2223) tapes. In the last case, the phase formation was investigated using transmission electron microscopy after several reaction times at 840°C. Here a stacking-sequence analysis was carried out, based on the lattice-fringe images taken from a total of 108 grains, where 36 grains were randomly chosen after each of the three heating times, e.g. 9, 17 and 25 hours, respectively.

From all these observations it follows that the formation of the Bi(2223) phase occurs simultaneously with a gradual decomposition of the Bi(2212) platelets initially present in the mixture. In addition, it can be concluded that the Bi(2223) phase primarily forms via a nucleation and growth process.

Keywords

Critical Current Density Misalignment Angle Intermediate Heat Treatment Tape Length Freeze Droplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Flükiger, G. Grasso, J.C. Grivcl, F. Marti, M. Dhallé. Y. Huang, Supercond. Sci. Technol., 10: A68 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    S. Fleshier, Q. Li, D. Parella, P.J. Walsh, W.J. Michels, G.N. Riley. Kunz, in « Critical Currents in Superconductors », T. Matsushita, Yamafuji, eds., World Scientific, Singapore (1996), p. 81.Google Scholar
  3. 3.
    K. Hayashi, S. Hahakura, S. Saga, S. Kobayashi. T. Kato, M. Ueyama, T. Hikata, K. Ohkura, K. Sato, IEEE Trans. Appl. Supercond., 7: 2201 (1997).CrossRefGoogle Scholar
  4. 4.
    M. Leghissa, B. Fischer, B. Roas, A. Jenovelis, J. Wiezorek, S. Kautz, H.W. Neumüller, IEEE Trans. Appl. Supercond., 7: 355 (1997)CrossRefGoogle Scholar
  5. 5.
    U. Balachandran, A.N. Iycr, R. Jammy, M. Chudzik, M. Lelovic, P. Krishnaraj, N.G. Eror, P. Haldar, IEEE Trans. Appl. Supercond., 7: 2207 (1997)CrossRefGoogle Scholar
  6. 6.
    G. Grasso, and R. Flükiger, in Advances in Superconductivity IX, Eds. S. Nakajima, M. Murakami, Springer Verlag, 1997, p. 835.Google Scholar
  7. 7.
    Q. Li, G.N. Riley, Jr., R. Parrella, S. Fleshier, M.W. Rupich, W.L. Carter, J.O. Willis, J.Y. Coulter, J.F. Bingert, J.A. Parrell, D.C. Larbalestier, IEEE Trans. Supercond., 7: 2026 (1997)Google Scholar
  8. 8.
    G. Grasso and R. Flükiger, accepted by Supercond. Sci. Technol.Google Scholar
  9. 9.
    S.E. Dorris, B.C. Prorok, M.T. Lanagan, N.B. Browning, M.R. Hagen, J.A. Parrell, Y. Feng, A. Umezawa, D.C. Larbalestier, Physica C 223: 163 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    G. Grasso, A. Jeremic, R. Flükiger, Supercond. Sci. Technol. 8: 827 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    W. Bian, Y. Zhu. Y.L. Wang, M. Suenaga, Physica C 248: 119 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    Y.L. Wang, W. Bian, Y. Zhu, Z.X. Cai, D.O. Welch, R.L. Sabatini, T.R. Thurston. M. Suenaga, Appl.Phys. Letters, 69: 580 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    J.C. Grivel and R. Flükiger, Supercond. Sci. Technol., 9: 555 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    J.C. Grivel, D. Grindatto, G. Grasso, R Flükiger, presented at SMART Conference, 25.-27. June 1997, Liège (Belgium), to be published in Supercond. Sci. Technlol.; J.C. Grivel, R. Flükiger, accepted by Supercond. Sci. Technol.Google Scholar
  15. 15.
    D.P. Grindatto, J.C. Grivel, G. Grasso, H.U. Niessen, R. Flükiger, to be published in Physica C.Google Scholar
  16. 16.
    J.C. Grivel, A. Jeremie, B. Hensel, R,. Flükiger, in « Proceedings of ICMAS 93 », J. Etourneau, J.B. Torrance, H. Yamauchi, eds., LI.T.T., 1993, p. 359.Google Scholar
  17. 17.
    A. Umezawa, Y. Feng, H.S. Edelman, T.C. Willis, J.A. Parrell, D.C. Larbalestier, G.N. Riley. W.L. Carter, Physica C 219: 378 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    A. Jeremie, PhD Thesis work, University of Geneva, 1995.Google Scholar
  19. 19.
    P. Majewski, Adv. Mater. 6: 460 (1994)CrossRefGoogle Scholar
  20. 20.
    J. MacManus-Driscoll,.presented at EUCAS, July 1997, Eindhoven (NL). to be published in Proceedings.Google Scholar
  21. 21.
    P.E.D. Morgan, R.M. Housley, J.R. Porter, J.J. Ratto, Physica C 176: 279 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    H. Maeda, Y. Tanaky, M. Fukotomi, T. Asano, Jpn. J. Appl. Phvs. 27: L209 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    A. Erb, E. Walker, R. Flükiger, Physica C 245: 245 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • R. Flükiger
    • 1
  • J. C. Grivel
    • 1
  • G. Grasso
    • 1
  • D. P. Grindatto
    • 2
  1. 1.Dépt. Physique Matière CondenséeUniversity of GenevaGenèveSwitzerland
  2. 2.Laboratorium fur FestkörperphysikETH ZürichZürichSwitzerland

Personalised recommendations