Skip to main content

Review on Boundary-Induced Coupling Currents

  • Chapter
Advances in Cryogenic Engineering Materials

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 44))

Abstract

Boundary-Induced Coupling Currents (BICCs) are generated in multistrand superconducting cables during a field sweep if a) the field sweep and/or b) the electrical contacts between the strands of the cable vary along the cable. Typical parts in a coil which cause large BICCs are the connections between two cables in or outside a coil and the coil ends of racetrack magnets.

In the first part of the paper several approaches for describing and calculating BICCs are reviewed. Attention is paid on the steady-state as well as the time dependent solutions.

In the second part of the paper the consequences of BICCs on the behaviour of magnets are discussed. These are additional field variations along the magnet length, additional coupling losses and a non-uniform distribution of coupling losses and current among the strands, resulting in a reduced stability. Several effects are illustrated by means of measurements on model dipole magnets. It is shown how the additive effect of all the BICCs in a coil is rather unpredictable so that similar coils can have rather different BICC related behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Ries and S. Takâcs, “Coupling losses in finite length of superconducting cables and in long cables partially in magnetic field”, IEEE Trans. on Magn. MAG-17, pp. 2281–2284 (1981).

    Google Scholar 

  2. S. Takâcs, “Coupling losses in cables in spatially changing ac fields”, Cryogenics 22, p. 661 (1982).

    Article  Google Scholar 

  3. S. Takâcs, “AC losses and time constants of flat superconducting cables in inhomogeneous magnetic fields”, SC Sci. Techn. 9, pp. 1–4 (1996).

    Article  Google Scholar 

  4. Krempasky, C. Schmidt, “Influence of a longitudinal variation of dB/dt on the magnetic field distribution of accelerator magnets”, Appl. Phys. Lett. 66 (12), pp. 1545–1547 (1995).

    Google Scholar 

  5. Krempasky, C. Schmidt, “Theory of supercurrents and their influence on field quality and stability of superconducting magnets”, J. Appl. Phys. 78 (9), pp. 5800–5810 (1995).

    Article  ADS  Google Scholar 

  6. Krempasky, C. Schmidt, “A possible explanation of the problem of ramp-rate limitation in large superconducting magnets”, IEEE Trans. Magn. 32 (4), pp. 2340–2344 (1996).

    Article  ADS  Google Scholar 

  7. A.A. Akhmetov, A. Devred, and R. Schermer, “Current loop decay in Rutherford-type cables”, SSCL preprint 485 (1993).

    Google Scholar 

  8. A.P. Verweij, “Current redistribution in the cables of LHC magnets”, CERN LHC project note 90 (1997).

    Google Scholar 

  9. S.A. Egorov, “AC coupling losses in superconducting cables of finite length”, ITER–RF–MS/A CL–02–09–94 (1994).

    Google Scholar 

  10. A.A. Akhmetov and T. Ogitsu, “Periodicity of eddy currents in flat Rutherford-type cables”, SSC internal note MD-TA-245 (1993).

    Google Scholar 

  11. A.A. Akhmetov, K. Kuroda and M. Takeo, “Influence of sample geometry on amplitude of eddy current oscillation in Rutherford-type cables”, IEEE Trans. Appl. SC 5 (2), pp. 725–728 (1995).

    Google Scholar 

  12. G.H. Morgan, “Eddy currents in flat metalf-illed superconducting braids”, J. Appl. Phys. 44, pp. 3319–3322 (1973).

    Article  ADS  Google Scholar 

  13. A.A. Akhmetov, A. Devred, and T. Ogitsu, “Periodicity of crossover currents in a Rutherford-type cable subjected to a time-dependent magnetic field”, J. Appl. Phys. 75 (6), pp. 3176–3183 (1994).

    Article  ADS  Google Scholar 

  14. A.A. Akhmetov, K. Kuroda, K. Ono and M. Takeo, “Eddy currents in flat two-layer superconducting cables”, Cryogenics 35, pp. 495–504 (1995).

    Article  Google Scholar 

  15. A.P. Verweij, and H.H.J. ten Kate, “Coupling Currents in Rutherford cables under time varying conditions”, IEEE Trans. On Appl. SC 3, pp. 146 (1993).

    Article  Google Scholar 

  16. A.P. Verweij, and H.H.J. ten Kate, “Super Coupling Currents in Rutherford type of cables due to longitudinal non-homogeneities of dB/dt”, IEEE Trans. On Appl. SC 4, pp. 404–407 (1995).

    Article  Google Scholar 

  17. A.P. Verweij, Electrodynamics of Superconducting Cables in Accelerator Magnets, PhD thesis University of Twente, The Netherlands (1995).

    Google Scholar 

  18. A.P. Verweij, “Modelling Boundary-Induced Coupling Currents in Rutherford-type cables”, IEEE Trans. Appl. SC 7, pp. 723–726 (1997).

    Article  Google Scholar 

  19. A.P. Verweij, M.P. Oomen, and H.H.J. ten Kate, “Boundary-Induced Coupling Currents in a 1.3 m Rutherford-type cable due to a locally applied field change”, IEEE Trans. Appl. SC 7, p. 270 (1997).

    Article  Google Scholar 

  20. W.B. Sampson and A.K. Ghosh, “Induced axial oscillations in superconducting dipole windings”, IEEE Trans. Appl. SC5, pp. 1036–1039 (1995).

    Google Scholar 

  21. A.A. Akhmetov, K. Kuroda, T. Koga, K. Ono and M. Takeo, “Decay of long current loops in the superconducting cables”, Proc. 2“d EUCAS 1, Edinburgh, UK, pp. 527–530 (1995).

    Google Scholar 

  22. E.A. Badea, “Numerical calculation of the magnetic field produced by currents circulating through two opposite strands of a Rutherford-type cable”, SSC internal note MD-TA-262 (1993).

    Google Scholar 

  23. H. Bruck et al., “Observation of a periodic pattern in the persistent-current fields of the superconducting HERA dipole magnets”, DESY 91–01 (1991) or Proc. ‘81 IEEE Part. Acc. Conf., pp. 2149–2151 (1991).

    Google Scholar 

  24. A.K. Ghosh, K.E. Robins, and W.B. Sampson, “The ramp rate dependence of the sextupole field in superconducting dipoles”, IEEE Trans. on Magn. 30, pp. 1718–1721 (1994).

    Article  ADS  Google Scholar 

  25. L. Bottura, Z. Ang, and L. Walckiers, “Experimental evidence of Boundary-Induced Coupling Currents in LHC prototypes”, IEEE Trans. Appl. SC 7, pp. 801–804 (1997).

    Article  Google Scholar 

  26. L. Bottura, L. Walckiers and R. Wolf, “Field errors decay and ”snap-back“ in LHC model dipoles”, IEEE Trans. Appl. SC 7, pp. 602–605 (1997).

    Google Scholar 

  27. R.I. Schermer, “Status of superconducting magnets for the Superconducting Super Collider”, IEEE Trans. Magn. 30, pp. 1587–1594 (1994).

    Article  ADS  Google Scholar 

  28. V.S. Vysotsky et. al., “New method of current distribution studies for ramp rate stability of multistrand superconducting cables”, IEEE Trans. Appl. SC 5, pp. 580–583 (1995).

    Article  Google Scholar 

  29. M. Takayasu et al., “Spike voltages seen during quick charge ramp limitation tests on Nb3Sn cable-inconduit conductors”, IEEE Trans. Appl. SC 7, pp. 150–154 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Verweij, A.P. (1998). Review on Boundary-Induced Coupling Currents. In: Balachandran, U.B., Gubser, D.G., Hartwig, K.T., Reed, R.P., Warnes, W.H., Bardos, V.A. (eds) Advances in Cryogenic Engineering Materials . Advances in Cryogenic Engineering, vol 44. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9056-6_139

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9056-6_139

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9058-0

  • Online ISBN: 978-1-4757-9056-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics